IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v36y2022i12d10.1007_s11269-022-03276-0.html
   My bibliography  Save this article

New Machine Learning Ensemble for Flood Susceptibility Estimation

Author

Listed:
  • Romulus Costache

    (Transilvania University of Brasov
    Danube Delta National Institute for Research and Development)

  • Alireza Arabameri

    (Tarbiat Modares University)

  • Iulia Costache

    (University of Bucharest)

  • Anca Crăciun

    (Danube Delta National Institute for Research and Development)

  • Binh Thai Pham

    (University of Transport Technology)

Abstract

Floods are among the most severe natural hazard phenomena that affect people around the world. Due to this fact, the identification of zones highly susceptible to floods became a very important activity in the researcher’s work. In this context, the present research work aimed to propose the following 3 novel ensembles to estimate the flood susceptibility in Putna river basin from Romania: UltraBoost-Weights of Evidence (U-WOE), Stochastic Gradient Descending-Weights of Evidence (SGD-WOE) and Cost Sensitive Forest-Weights of Evidence (CSForest-WOE). In this regard, a sample of 132 flood locations and 14 flood predictors was used as input datasets in the 3 aforementioned models. The modeling procedure performed through a ten-fold cross-validation method revealed that the SGD-WOE ensemble model achieved the highest performance in terms of ROC Curve-AUC (0.953) and also in terms of Accuracy (0.94). The slope and distance from river flood predictors achieved the highest importance in terms of flood susceptibility genesis, while the aspect, TPI, hydrological soil groups, and plan curvature have the lowest influence in terms of flood occurrence. The area with high and very high susceptibility represents between 21% and 24% of the Putna river basin from Romania.

Suggested Citation

  • Romulus Costache & Alireza Arabameri & Iulia Costache & Anca Crăciun & Binh Thai Pham, 2022. "New Machine Learning Ensemble for Flood Susceptibility Estimation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4765-4783, September.
  • Handle: RePEc:spr:waterr:v:36:y:2022:i:12:d:10.1007_s11269-022-03276-0
    DOI: 10.1007/s11269-022-03276-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-022-03276-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-022-03276-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lorena Liuzzo & Vincenzo Sammartano & Gabriele Freni, 2019. "Comparison between Different Distributed Methods for Flood Susceptibility Mapping," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(9), pages 3155-3173, July.
    2. Zhenhao Zhang & Changchun Luo & Zhenpeng Zhao, 2020. "Application of probabilistic method in maximum tsunami height prediction considering stochastic seabed topography," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2511-2530, December.
    3. Saeid Janizadeh & Mehdi Vafakhah & Zoran Kapelan & Naghmeh Mobarghaee Dinan, 2021. "Novel Bayesian Additive Regression Tree Methodology for Flood Susceptibility Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(13), pages 4621-4646, October.
    4. Nigel Arnell & Simon Gosling, 2016. "The impacts of climate change on river flood risk at the global scale," Climatic Change, Springer, vol. 134(3), pages 387-401, February.
    5. Iuliana Armaş, 2012. "Weights of evidence method for landslide susceptibility mapping. Prahova Subcarpathians, Romania," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(3), pages 937-950, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiang Hu & Yuelong Zhu & Hexuan Hu & Zhuang Guan & Zeyu Qian & Aiming Yang, 2022. "Multiple Kernel Learning with Maximum Inundation Extent from MODIS Imagery for Spatial Prediction of Flood Susceptibility," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(1), pages 55-73, January.
    2. Bushra Khalid & Bueh Cholaw & Débora Souza Alvim & Shumaila Javeed & Junaid Aziz Khan & Muhammad Asif Javed & Azmat Hayat Khan, 2018. "Riverine flood assessment in Jhang district in connection with ENSO and summer monsoon rainfall over Upper Indus Basin for 2010," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 971-993, June.
    3. Laura Devitt & Jeffrey Neal & Gemma Coxon & James Savage & Thorsten Wagener, 2023. "Flood hazard potential reveals global floodplain settlement patterns," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Indira Pokhrel & Ajay Kalra & Md Mafuzur Rahaman & Ranjeet Thakali, 2020. "Forecasting of Future Flooding and Risk Assessment under CMIP6 Climate Projection in Neuse River, North Carolina," Forecasting, MDPI, vol. 2(3), pages 1-23, August.
    5. Osberghaus, Daniel & Reif, Christiane, 2021. "How do different compensation schemes and loss experience affect insurance decisions? Experimental evidence from two independent and heterogeneous samples," Ecological Economics, Elsevier, vol. 187(C).
    6. Swarupa Paudel & Neekita Joshi & Ajay Kalra, 2023. "Projected Future Flooding Pattern of Wabash River in Indiana and Fountain Creek in Colorado: An Assessment Utilizing Bias-Corrected CMIP6 Climate Data," Forecasting, MDPI, vol. 5(2), pages 1-19, April.
    7. Choi, Hyunhong & Shin, Jungwoo & Woo, JongRoul, 2018. "Effect of electricity generation mix on battery electric vehicle adoption and its environmental impact," Energy Policy, Elsevier, vol. 121(C), pages 13-24.
    8. Ali Aldrees, 2021. "Water management in Saudi Arabia: a case study of Makkah Al Mukarramah region," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 13650-13666, September.
    9. Patault, Edouard & Ledun, Jérôme & Landemaine, Valentin & Soulignac, Arnaud & Richet, Jean-Baptiste & Fournier, Matthieu & Ouvry, Jean-François & Cerdan, Olivier & Laignel, Benoit, 2021. "Analysis of off-site economic costs induced by runoff and soil erosion: Example of two areas in the northwestern European loess belt for the last two decades (Normandy, France)," Land Use Policy, Elsevier, vol. 108(C).
    10. Ignacio Fraga & Luis Cea & Jerónimo Puertas, 2020. "MERLIN: a flood hazard forecasting system for coastal river reaches," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(3), pages 1171-1193, February.
    11. Sudheer Padikkal & K. S. Sumam & N. Sajikumar, 2018. "Sustainability indicators of water sharing compacts," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(5), pages 2027-2042, October.
    12. Rosa Fernández Ropero & María Julia Flores & Rafael Rumí, 2022. "Bayesian Networks for Preprocessing Water Management Data," Mathematics, MDPI, vol. 10(10), pages 1-18, May.
    13. Hereher, Mohamed & El Kenawy, Ahmed M., 2020. "Exploring the potential of solar, tidal, and wind energy resources in Oman using an integrated climatic-socioeconomic approach," Renewable Energy, Elsevier, vol. 161(C), pages 662-675.
    14. Yi-Chang Chiang & Tzen-Ying Ling, 2017. "Exploring Flood Resilience Thinking in the Retail Sector under Climate Change: A Case Study of an Estuarine Region of Taipei City," Sustainability, MDPI, vol. 9(9), pages 1-21, September.
    15. Zhiqiang Yin & Yixin Hu & Katie Jenkins & Yi He & Nicole Forstenhäusler & Rachel Warren & Lili Yang & Rhosanna Jenkins & Dabo Guan, 2021. "Assessing the economic impacts of future fluvial flooding in six countries under climate change and socio-economic development," Climatic Change, Springer, vol. 166(3), pages 1-21, June.
    16. Morteza Akbari & Ehsan Neamatollahi & Hadi Memarian & Mohammad Alizadeh Noughani, 2023. "Assessing impacts of floods disaster on soil erosion risk based on the RUSLE-GloSEM approach in western Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(2), pages 1689-1710, June.
    17. Rana Muhammad Adnan Ikram & Imran Khan & Hossein Moayedi & Atefeh Ahmadi Dehrashid & Ismail Elkhrachy & Binh Nguyen Le, 2024. "Novel evolutionary-optimized neural network for predicting landslide susceptibility," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(7), pages 17687-17719, July.
    18. Tingting Cai & Dongmin Yu & Huanan Liu & Fengkai Gao, 2022. "RETRACTED: Computational Analysis of Variational Inequalities Using Mean Extra-Gradient Approach," Mathematics, MDPI, vol. 10(13), pages 1-14, July.
    19. Cillian P. McDowell & Luisa Andrade & Eoin O’Neill & Kevin O’Malley & Jean O’Dwyer & Paul D. Hynds, 2020. "Gender-Related Differences in Flood Risk Perception and Behaviours among Private Groundwater Users in the Republic of Ireland," IJERPH, MDPI, vol. 17(6), pages 1-14, March.
    20. Maia, Mateus & Murphy, Keefe & Parnell, Andrew C., 2024. "GP-BART: A novel Bayesian additive regression trees approach using Gaussian processes," Computational Statistics & Data Analysis, Elsevier, vol. 190(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:36:y:2022:i:12:d:10.1007_s11269-022-03276-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.