IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v94y2018i3d10.1007_s11069-018-3460-3.html
   My bibliography  Save this article

Probabilistic Tsunami Hazard Assessment (PTHA) for resilience assessment of a coastal community

Author

Listed:
  • Hyoungsu Park

    (Oregon State University)

  • Daniel T. Cox

    (Oregon State University)

  • Andre R. Barbosa

    (Oregon State University)

Abstract

Probabilistic Tsunami Hazard Analysis (PTHA) can be used to evaluate and quantify tsunami hazards for planning of integrated community-level preparedness, including mitigation of casualties and dollar losses, and to study resilient solutions for coastal communities. PTHA can provide several outputs such as the intensity measures (IMs) of the hazard quantified as a function of the recurrence interval of a tsunami event. In this paper, PTHA is developed using a logic tree approach based on numerical modeling for tsunami generated along the Cascadia Subduction Zone. The PTHA is applied to a community on the US Pacific Northwest Coast located in Newport, Oregon. Results of the PTHA are provided for five IMs: inundation depth, flow speed, specific momentum flux, arrival time, and duration of inundation. The first three IMs are predictors of tsunami impact on the natural and built environment, and the last two are useful for tsunami evacuation and immediate response planning. Results for the five IMs are presented as annual exceedance probability for sites within the community along several transects with varying bathymetric and topographic features. Community-level characteristics of spatial distribution of each IM for three recurrence intervals (500, 1000, 2500 year) are provided. Results highlight the different pattern of IMs between land and river transects, and significant magnitude variation of IMs due to complex bathymetry and topographic conditions at the various recurrence intervals. IMs show relatively higher magnitudes near the coastline, at the low elevation regions, and at the harbor channel. In addition, results indicate a positive correlation between inundation depth and other IMs near the coastline, but a weaker correlation at inland locations. Values of the Froude number ranged 0.1–1.0 over the inland inundation area. In general, the results in this study highlight the spatial differences in IMs and suggest the need to include multiple IMs for resilience planning for a coastal community subjected to tsunami hazards.

Suggested Citation

  • Hyoungsu Park & Daniel T. Cox & Andre R. Barbosa, 2018. "Probabilistic Tsunami Hazard Assessment (PTHA) for resilience assessment of a coastal community," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(3), pages 1117-1139, December.
  • Handle: RePEc:spr:nathaz:v:94:y:2018:i:3:d:10.1007_s11069-018-3460-3
    DOI: 10.1007/s11069-018-3460-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-018-3460-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-018-3460-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohammad Heidarzadeh & Andrzej Kijko, 2011. "A probabilistic tsunami hazard assessment for the Makran subduction zone at the northwestern Indian Ocean," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 56(3), pages 577-593, March.
    2. Loyce Adams & Randall LeVeque & Frank González, 2015. "The Pattern Method for incorporating tidal uncertainty into probabilistic tsunami hazard assessment (PTHA)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(1), pages 19-39, March.
    3. George Priest & Chris Goldfinger & Kelin Wang & Robert Witter & Yinglong Zhang & António Baptista, 2010. "Confidence levels for tsunami-inundation limits in northern Oregon inferred from a 10,000-year history of great earthquakes at the Cascadia subduction zone," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 54(1), pages 27-73, July.
    4. Eric Geist & Tom Parsons, 2006. "Probabilistic Analysis of Tsunami Hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 37(3), pages 277-314, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Byung-Ho Kim & Min-Jong Song & Yong-Sik Cho, 2022. "Safety Analysis of a Nuclear Power Plant against Unexpected Tsunamis," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
    2. Jun-Whan Lee & Jennifer L. Irish & Robert Weiss, 2020. "Rapid prediction of alongshore run-up distribution from near-field tsunamis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(2), pages 1157-1180, November.
    3. L. B. Chubarov & V. A. Kikhtenko & A. V. Lander & O. I. Gusev & S. A. Beisel & T. K. Pinegina, 2022. "Technique of local probabilistic tsunami zonation for near-field seismic sources applied to the Bechevinskaya Cove (the Kamchatka Peninsula)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 373-406, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amin Rashidi & Zaher Hossein Shomali & Denys Dutykh & Nasser Keshavarz Farajkhah, 2020. "Tsunami hazard assessment in the Makran subduction zone," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(2), pages 861-875, January.
    2. George Priest & Yinglong Zhang & Robert Witter & Kelin Wang & Chris Goldfinger & Laura Stimely, 2014. "Tsunami impact to Washington and northern Oregon from segment ruptures on the southern Cascadia subduction zone," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 849-870, June.
    3. Mohammad Heidarzadeh & Moharram Pirooz & Nasser Zaker & Ahmet Yalciner, 2009. "Preliminary estimation of the tsunami hazards associated with the Makran subduction zone at the northwestern Indian Ocean," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 48(2), pages 229-243, February.
    4. Mohammad Heidarzadeh & Andrzej Kijko, 2011. "A probabilistic tsunami hazard assessment for the Makran subduction zone at the northwestern Indian Ocean," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 56(3), pages 577-593, March.
    5. Jin‐Feng Wang & Lian‐Fa Li, 2008. "Improving Tsunami Warning Systems with Remote Sensing and Geographical Information System Input," Risk Analysis, John Wiley & Sons, vol. 28(6), pages 1653-1668, December.
    6. Ignacio Barranco & Vicente Gracia & Joan Pau Sierra & Hector Perea & Xavier Gironella, 2017. "Tsunami hazards in the Catalan Coast, a low-intensity seismic activity area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1273-1295, September.
    7. Byung-Ho Kim & Min-Jong Song & Yong-Sik Cho, 2022. "Safety Analysis of a Nuclear Power Plant against Unexpected Tsunamis," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
    8. Anita Grezio & Warner Marzocchi & Laura Sandri & Paolo Gasparini, 2010. "A Bayesian procedure for Probabilistic Tsunami Hazard Assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 53(1), pages 159-174, April.
    9. Panon Latcharote & Khaled Al-Salem & Anawat Suppasri & Tanuspong Pokavanich & Shinji Toda & Yogeesha Jayaramu & Abdullah Al-Enezi & Alanoud Al-Ragum & Fumihiko Imamura, 2018. "Tsunami hazard evaluation for Kuwait and Arabian Gulf due to Makran Subduction Zone and Subaerial landslides," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(1), pages 127-152, September.
    10. Andrea Cerase & Lorenzo Cugliari, 2023. "Something Still Remains: Factors Affecting Tsunami Risk Perception on the Coasts Hit by the Reggio Calabria-Messina 1908 Event (Italy)," Sustainability, MDPI, vol. 15(3), pages 1-26, February.
    11. G. Hoffmann & K. Reicherter & T. Wiatr & C. Grützner & T. Rausch, 2013. "Block and boulder accumulations along the coastline between Fins and Sur (Sultanate of Oman): tsunamigenic remains?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 851-873, January.
    12. Hamid Zafarani & Leila Etemadsaeed & Mohammad Rahimi & Navid Kheirdast & Amin Rashidi & Anooshiravan Ansari & Mohammad Mokhtari & Morteza Eskandari-Ghadi, 2023. "Probabilistic tsunami hazard analysis for western Makran coasts, south-east Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1275-1311, January.
    13. J. Wijetunge, 2010. "Numerical simulation and field survey of inundation due to 2004 Indian Ocean tsunami in Trincomalee, Sri Lanka," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 54(1), pages 177-192, July.
    14. Eric Geist & Uri Brink & Matthew Gove, 2014. "A framework for the probabilistic analysis of meteotsunamis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(1), pages 123-142, October.
    15. David Burbidge & Phil Cummins, 2007. "Assessing the threat to Western Australia from tsunami generated by earthquakes along the Sunda Arc," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 43(3), pages 319-331, December.
    16. Sascha Brune & Stefan Ladage & Andrey Babeyko & Christian Müller & Heidrun Kopp & Stephan Sobolev, 2010. "Submarine landslides at the eastern Sunda margin: observations and tsunami impact assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 54(2), pages 547-562, August.
    17. Parastoo Salah & Jun Sasaki, 2021. "Knowledge, Awareness, and Attitudes toward Tsunamis: A Local Survey in the Southern Coast of Iran," Sustainability, MDPI, vol. 13(2), pages 1-19, January.
    18. Carl Harbitz & Finn Løvholt & Hilmar Bungum, 2014. "Submarine landslide tsunamis: how extreme and how likely?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(3), pages 1341-1374, July.
    19. Curt Peterson & Gary Carver & John Clague & Kenneth Cruikshank, 2015. "Maximum-recorded overland run-ups of major nearfield paleotsunamis during the past 3000 years along the Cascadia margin, USA, and Canada," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(3), pages 2005-2026, July.
    20. George R. Priest & Robert C. Witter & Yinglong J. Zhang & Chris Goldfinger & Kelin Wang & Jonathan C. Allan, 2017. "New constraints on coseismic slip during southern Cascadia subduction zone earthquakes over the past 4600 years implied by tsunami deposits and marine turbidites," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(1), pages 285-313, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:94:y:2018:i:3:d:10.1007_s11069-018-3460-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.