IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v24y2022i4d10.1007_s11009-022-09938-1.html
   My bibliography  Save this article

Hawkes Processes Framework With a Gamma Density As Excitation Function: Application to Natural Disasters for Insurance

Author

Listed:
  • Laurent Lesage

    (University of Lorraine, CNRS, Inria, IECL
    University of Luxembourg)

  • Madalina Deaconu

    (University of Lorraine, CNRS, Inria, IECL)

  • Antoine Lejay

    (University of Lorraine, CNRS, Inria, IECL)

  • Jorge Augusto Meira

    (University of Luxembourg)

  • Geoffrey Nichil

    (Foyer Assurances)

  • Radu State

    (University of Luxembourg)

Abstract

Hawkes processes are temporal self-exciting point processes. They are well established in earthquake modelling or finance and their application is spreading to diverse areas. Most models from the literature have two major drawbacks regarding their potential application to insurance. First, they use an exponentially-decaying form of excitation, which does not allow a delay between the occurrence of an event and its excitation effect on the process and does not fit well on insurance data consequently. Second, theoretical results developed from these models are valid only when time of observation tends to infinity, whereas the time horizon for an insurance use case is of several months or years. In this paper, we define a complete framework of Hawkes processes with a Gamma density excitation function (i.e. estimation, simulation, goodness-of-fit) instead of an exponential-decaying function and we demonstrate some mathematical properties (i.e. expectation, variance) about the transient regime of the process. We illustrate our results with real insurance data about natural disasters in Luxembourg.

Suggested Citation

  • Laurent Lesage & Madalina Deaconu & Antoine Lejay & Jorge Augusto Meira & Geoffrey Nichil & Radu State, 2022. "Hawkes Processes Framework With a Gamma Density As Excitation Function: Application to Natural Disasters for Insurance," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2509-2537, December.
  • Handle: RePEc:spr:metcap:v:24:y:2022:i:4:d:10.1007_s11009-022-09938-1
    DOI: 10.1007/s11009-022-09938-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-022-09938-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-022-09938-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Halpin & Paul Boeck, 2013. "Modelling Dyadic Interaction with Hawkes Processes," Psychometrika, Springer;The Psychometric Society, vol. 78(4), pages 793-814, October.
    2. Mohler, G. O. & Short, M. B. & Brantingham, P. J. & Schoenberg, F. P. & Tita, G. E., 2011. "Self-Exciting Point Process Modeling of Crime," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 100-108.
    3. Xuefeng Gao & Lingjiong Zhu, 2018. "Functional central limit theorems for stationary Hawkes processes and application to infinite-server queues," Queueing Systems: Theory and Applications, Springer, vol. 90(1), pages 161-206, October.
    4. Zailei Cheng & Youngsoo Seol, 2020. "Diffusion Approximation of a Risk Model with Non-Stationary Hawkes Arrivals of Claims," Methodology and Computing in Applied Probability, Springer, vol. 22(2), pages 555-571, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mercuri, Lorenzo & Perchiazzo, Andrea & Rroji, Edit, 2024. "A Hawkes model with CARMA(p,q) intensity," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 1-26.
    2. Kyungsub Lee, 2024. "Discrete Hawkes process with flexible residual distribution and filtered historical simulation," Papers 2401.13890, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laurent Lesage & Madalina Deaconu & Antoine Lejay & Jorge Augusto Meira & Geoffrey Nichil & Radu State, 2020. "Hawkes processes framework with a Gamma density as excitation function: application to natural disasters for insurance," Working Papers hal-03040090, HAL.
    2. Laurent Lesage & Madalina Deaconu & Antoine Lejay & Jorge Augusto Meira & Geoffrey Nichil & Radu State, 2022. "Hawkes processes framework with a Gamma density as excitation function: application to natural disasters for insurance," Post-Print hal-03040090, HAL.
    3. Mercuri, Lorenzo & Perchiazzo, Andrea & Rroji, Edit, 2024. "A Hawkes model with CARMA(p,q) intensity," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 1-26.
    4. Wang, Haixu, 2022. "Limit theorems for a discrete-time marked Hawkes process," Statistics & Probability Letters, Elsevier, vol. 184(C).
    5. Youngsoo Seol, 2023. "Large Deviations for Hawkes Processes with Randomized Baseline Intensity," Mathematics, MDPI, vol. 11(8), pages 1-10, April.
    6. Youngsoo Seol, 2022. "Non-Markovian Inverse Hawkes Processes," Mathematics, MDPI, vol. 10(9), pages 1-12, April.
    7. Anatoliy Swishchuk & Aiden Huffman, 2020. "General Compound Hawkes Processes in Limit Order Books," Risks, MDPI, vol. 8(1), pages 1-25, March.
    8. Dewei Wang & Chendi Jiang & Chanseok Park, 2019. "Reliability analysis of load-sharing systems with memory," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(2), pages 341-360, April.
    9. Cavaliere, Giuseppe & Lu, Ye & Rahbek, Anders & Stærk-Østergaard, Jacob, 2023. "Bootstrap inference for Hawkes and general point processes," Journal of Econometrics, Elsevier, vol. 235(1), pages 133-165.
    10. Mohler, George, 2014. "Marked point process hotspot maps for homicide and gun crime prediction in Chicago," International Journal of Forecasting, Elsevier, vol. 30(3), pages 491-497.
    11. Boswijk, H. Peter & Laeven, Roger J.A. & Yang, Xiye, 2018. "Testing for self-excitation in jumps," Journal of Econometrics, Elsevier, vol. 203(2), pages 256-266.
    12. Chenlong Li & Zhanjie Song & Wenjun Wang, 2020. "Space–time inhomogeneous background intensity estimators for semi-parametric space–time self-exciting point process models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(4), pages 945-967, August.
    13. Sebastian Meyer & Johannes Elias & Michael Höhle, 2012. "A Space–Time Conditional Intensity Model for Invasive Meningococcal Disease Occurrence," Biometrics, The International Biometric Society, vol. 68(2), pages 607-616, June.
    14. Thibault Jaisson & Mathieu Rosenbaum, 2015. "Rough fractional diffusions as scaling limits of nearly unstable heavy tailed Hawkes processes," Papers 1504.03100, arXiv.org.
    15. Ulrich Horst & Wei Xu, 2024. "Functional Limit Theorems for Hawkes Processes," Papers 2401.11495, arXiv.org, revised Dec 2024.
    16. Mateo Dulce Rubio, 2019. "Predicting criminal behavior with Levy flights using real data from Bogota," Documentos de Trabajo 17347, Quantil.
    17. Lizhen Xu & Jason A. Duan & Andrew Whinston, 2014. "Path to Purchase: A Mutually Exciting Point Process Model for Online Advertising and Conversion," Management Science, INFORMS, vol. 60(6), pages 1392-1412, June.
    18. Amanda S. Hering & Sean Bair, 2014. "Characterizing spatial and chronological target selection of serial offenders," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 63(1), pages 123-140, January.
    19. Mohammed A. A. Al-qaness & Ahmed A. Ewees & Hong Fan & Mohamed Abd Elaziz, 2020. "Optimized Forecasting Method for Weekly Influenza Confirmed Cases," IJERPH, MDPI, vol. 17(10), pages 1-12, May.
    20. Angelos Dassios & Hongbiao Zhao, 2017. "A Generalized Contagion Process With An Application To Credit Risk," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(01), pages 1-33, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:24:y:2022:i:4:d:10.1007_s11009-022-09938-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.