IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v184y2022ics0167715222000037.html
   My bibliography  Save this article

Limit theorems for a discrete-time marked Hawkes process

Author

Listed:
  • Wang, Haixu

Abstract

Hawkes process is a self-exciting point process with wide applications in many fields, such as finance, seismology, and ecology. Hawkes processes are defined for the continuous-time setting. However, data is often recorded in a discrete-time or aggregated scheme. To model the temporal process in aggregated way, oftentimes a discrete-time type Hawkes process is more desirable. In this paper, we study the limit theorems for a discrete-time marked Hawkes process first proposed in Xu et al. (2020).

Suggested Citation

  • Wang, Haixu, 2022. "Limit theorems for a discrete-time marked Hawkes process," Statistics & Probability Letters, Elsevier, vol. 184(C).
  • Handle: RePEc:eee:stapro:v:184:y:2022:i:c:s0167715222000037
    DOI: 10.1016/j.spl.2022.109368
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715222000037
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2022.109368?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thibault Jaisson & Mathieu Rosenbaum, 2013. "Limit theorems for nearly unstable Hawkes processes," Papers 1310.2033, arXiv.org, revised Mar 2015.
    2. Seol, Youngsoo, 2015. "Limit theorems for discrete Hawkes processes," Statistics & Probability Letters, Elsevier, vol. 99(C), pages 223-229.
    3. Emmanuel Bacry & Jean-Fran�ois Muzy, 2014. "Hawkes model for price and trades high-frequency dynamics," Quantitative Finance, Taylor & Francis Journals, vol. 14(7), pages 1147-1166, July.
    4. BAUWENS, Luc & HAUTSCH, Nikolaus, 2006. "Modelling financial high frequency data using point processes," LIDAM Discussion Papers CORE 2006080, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. Xuefeng Gao & Lingjiong Zhu, 2018. "Functional central limit theorems for stationary Hawkes processes and application to infinite-server queues," Queueing Systems: Theory and Applications, Springer, vol. 90(1), pages 161-206, October.
    6. Horst, Ulrich & Xu, Wei, 2021. "Functional limit theorems for marked Hawkes point measures," Stochastic Processes and their Applications, Elsevier, vol. 134(C), pages 94-131.
    7. Gao, Xuefeng & Zhu, Lingjiong, 2018. "Limit theorems for Markovian Hawkes processes with a large initial intensity," Stochastic Processes and their Applications, Elsevier, vol. 128(11), pages 3807-3839.
    8. Zailei Cheng & Youngsoo Seol, 2020. "Diffusion Approximation of a Risk Model with Non-Stationary Hawkes Arrivals of Claims," Methodology and Computing in Applied Probability, Springer, vol. 22(2), pages 555-571, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Youngsoo Seol, 2023. "Large Deviations for Hawkes Processes with Randomized Baseline Intensity," Mathematics, MDPI, vol. 11(8), pages 1-10, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seol, Youngsoo, 2019. "Limit theorems for an inverse Markovian Hawkes process," Statistics & Probability Letters, Elsevier, vol. 155(C), pages 1-1.
    2. Youngsoo Seol, 2023. "Large Deviations for Hawkes Processes with Randomized Baseline Intensity," Mathematics, MDPI, vol. 11(8), pages 1-10, April.
    3. Youngsoo Seol, 2022. "Non-Markovian Inverse Hawkes Processes," Mathematics, MDPI, vol. 10(9), pages 1-12, April.
    4. Li, Bo & Pang, Guodong, 2022. "Functional limit theorems for nonstationary marked Hawkes processes in the high intensity regime," Stochastic Processes and their Applications, Elsevier, vol. 143(C), pages 285-339.
    5. Ulrich Horst & Wei Xu, 2024. "Functional Limit Theorems for Hawkes Processes," Papers 2401.11495, arXiv.org.
    6. Lee, Kyungsub & Seo, Byoung Ki, 2017. "Modeling microstructure price dynamics with symmetric Hawkes and diffusion model using ultra-high-frequency stock data," Journal of Economic Dynamics and Control, Elsevier, vol. 79(C), pages 154-183.
    7. Raviar Karim & Roger J. A. Laeven & Michel Mandjes, 2021. "Exact and Asymptotic Analysis of General Multivariate Hawkes Processes and Induced Population Processes," Papers 2106.03560, arXiv.org.
    8. Ulrich Horst & Dörte Kreher, 2018. "Second order approximations for limit order books," Finance and Stochastics, Springer, vol. 22(4), pages 827-877, October.
    9. Antoine Fosset & Jean-Philippe Bouchaud & Michael Benzaquen, 2020. "Non-parametric Estimation of Quadratic Hawkes Processes for Order Book Events," Papers 2005.05730, arXiv.org.
    10. Laurent Lesage & Madalina Deaconu & Antoine Lejay & Jorge Augusto Meira & Geoffrey Nichil & Radu State, 2020. "Hawkes processes framework with a Gamma density as excitation function: application to natural disasters for insurance," Working Papers hal-03040090, HAL.
    11. Hainaut, Donatien & Goutte, Stephane, 2018. "A switching microstructure model for stock prices," LIDAM Discussion Papers ISBA 2018014, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    12. Emmanuel Bacry & Thibault Jaisson & Jean-Francois Muzy, 2014. "Estimation of slowly decreasing Hawkes kernels: Application to high frequency order book modelling," Papers 1412.7096, arXiv.org.
    13. Dassios, Angelos & Jang, Jiwook & Zhao, Hongbiao, 2019. "A generalised CIR process with externally-exciting and self-exciting jumps and its applications in insurance and finance," LSE Research Online Documents on Economics 102043, London School of Economics and Political Science, LSE Library.
    14. Thibault Jaisson, 2015. "Market impact as anticipation of the order flow imbalance," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1123-1135, July.
    15. Maxime Morariu-Patrichi & Mikko Pakkanen, 2018. "State-dependent Hawkes processes and their application to limit order book modelling," CREATES Research Papers 2018-26, Department of Economics and Business Economics, Aarhus University.
    16. Maxime Morariu-Patrichi & Mikko S. Pakkanen, 2018. "State-dependent Hawkes processes and their application to limit order book modelling," Papers 1809.08060, arXiv.org, revised Sep 2021.
    17. Heidar Eyjolfsson & Dag Tjøstheim, 2018. "Self-exciting jump processes with applications to energy markets," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(2), pages 373-393, April.
    18. Kyungsub Lee, 2022. "Application of Hawkes volatility in the observation of filtered high-frequency price process in tick structures," Papers 2207.05939, arXiv.org, revised Sep 2024.
    19. Bastien Baldacci, 2020. "High-frequency dynamics of the implied volatility surface," Papers 2012.10875, arXiv.org.
    20. Angelos Dassios & Jiwook Jang & Hongbiao Zhao, 2019. "A Generalised CIR Process with Externally-Exciting and Self-Exciting Jumps and Its Applications in Insurance and Finance," Risks, MDPI, vol. 7(4), pages 1-18, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:184:y:2022:i:c:s0167715222000037. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.