IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i9p1413-d800056.html
   My bibliography  Save this article

Non-Markovian Inverse Hawkes Processes

Author

Listed:
  • Youngsoo Seol

    (Department of Mathematics, Dong-A University, Busan 49315, Korea)

Abstract

Hawkes processes are a class of self-exciting point processes with a clustering effect whose jump rate is determined by its past history. They are generally regarded as continuous-time processes and have been widely applied in a number of fields, such as insurance, finance, queueing, and statistics. The Hawkes model is generally non-Markovian because its future development depends on the timing of past events. However, it can be Markovian under certain circumstances. If the exciting function is an exponential function or a sum of exponential functions, the model can be Markovian with a generator of the model. In contrast to the general Hawkes processes, the inverse Hawkes process has some specific features and self-excitation indicates severity. Inverse Markovian Hawkes processes were introduced by Seol, who studied some asymptotic behaviors. An extended version of inverse Markovian Hawkes processes was also studied by Seol. With this paper, we propose a non-Markovian inverse Hawkes process, which is a more general inverse Hawkes process that features several existing models of self-exciting processes. In particular, we established both the law of large numbers (LLN) and Central limit theorems (CLT) for a newly considered non-Markovian inverse Hawkes process.

Suggested Citation

  • Youngsoo Seol, 2022. "Non-Markovian Inverse Hawkes Processes," Mathematics, MDPI, vol. 10(9), pages 1-12, April.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:9:p:1413-:d:800056
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/9/1413/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/9/1413/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thibault Jaisson & Mathieu Rosenbaum, 2013. "Limit theorems for nearly unstable Hawkes processes," Papers 1310.2033, arXiv.org, revised Mar 2015.
    2. Seol, Youngsoo, 2015. "Limit theorems for discrete Hawkes processes," Statistics & Probability Letters, Elsevier, vol. 99(C), pages 223-229.
    3. Gao, Fuqing & Zhu, Lingjiong, 2018. "Some asymptotic results for nonlinear Hawkes processes," Stochastic Processes and their Applications, Elsevier, vol. 128(12), pages 4051-4077.
    4. Seol, Youngsoo, 2017. "Limit theorems for the compensator of Hawkes processes," Statistics & Probability Letters, Elsevier, vol. 127(C), pages 165-172.
    5. Wheatley, Spencer & Filimonov, Vladimir & Sornette, Didier, 2016. "The Hawkes process with renewal immigration & its estimation with an EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 120-135.
    6. Zhu, Lingjiong, 2013. "Ruin probabilities for risk processes with non-stationary arrivals and subexponential claims," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 544-550.
    7. Zhu, Lingjiong, 2013. "Moderate deviations for Hawkes processes," Statistics & Probability Letters, Elsevier, vol. 83(3), pages 885-890.
    8. Mohler, G. O. & Short, M. B. & Brantingham, P. J. & Schoenberg, F. P. & Tita, G. E., 2011. "Self-Exciting Point Process Modeling of Crime," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 100-108.
    9. Xuefeng Gao & Lingjiong Zhu, 2018. "Functional central limit theorems for stationary Hawkes processes and application to infinite-server queues," Queueing Systems: Theory and Applications, Springer, vol. 90(1), pages 161-206, October.
    10. Seol, Youngsoo, 2019. "Limit theorems for an inverse Markovian Hawkes process," Statistics & Probability Letters, Elsevier, vol. 155(C), pages 1-1.
    11. Gao, Xuefeng & Zhu, Lingjiong, 2018. "Limit theorems for Markovian Hawkes processes with a large initial intensity," Stochastic Processes and their Applications, Elsevier, vol. 128(11), pages 3807-3839.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Selvamuthu, Dharmaraja & Pandey, Shamiksha & Tardelli, Paola, 2023. "Limit Theorems for an extended inverse Hawkes process with general exciting functions," Statistics & Probability Letters, Elsevier, vol. 197(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Youngsoo Seol, 2023. "Large Deviations for Hawkes Processes with Randomized Baseline Intensity," Mathematics, MDPI, vol. 11(8), pages 1-10, April.
    2. Seol, Youngsoo, 2019. "Limit theorems for an inverse Markovian Hawkes process," Statistics & Probability Letters, Elsevier, vol. 155(C), pages 1-1.
    3. Selvamuthu, Dharmaraja & Pandey, Shamiksha & Tardelli, Paola, 2023. "Limit Theorems for an extended inverse Hawkes process with general exciting functions," Statistics & Probability Letters, Elsevier, vol. 197(C).
    4. Ulrich Horst & Wei Xu, 2024. "Functional Limit Theorems for Hawkes Processes," Papers 2401.11495, arXiv.org, revised Nov 2024.
    5. Wang, Haixu, 2022. "Limit theorems for a discrete-time marked Hawkes process," Statistics & Probability Letters, Elsevier, vol. 184(C).
    6. Seol, Youngsoo, 2017. "Limit theorems for the compensator of Hawkes processes," Statistics & Probability Letters, Elsevier, vol. 127(C), pages 165-172.
    7. Li, Bo & Pang, Guodong, 2022. "Functional limit theorems for nonstationary marked Hawkes processes in the high intensity regime," Stochastic Processes and their Applications, Elsevier, vol. 143(C), pages 285-339.
    8. Horst, Ulrich & Xu, Wei, 2021. "Functional limit theorems for marked Hawkes point measures," Stochastic Processes and their Applications, Elsevier, vol. 134(C), pages 94-131.
    9. Raviar Karim & Roger J. A. Laeven & Michel Mandjes, 2021. "Exact and Asymptotic Analysis of General Multivariate Hawkes Processes and Induced Population Processes," Papers 2106.03560, arXiv.org.
    10. Ulrich Horst & Wei Xu, 2019. "Functional Limit Theorems for Marked Hawkes Point Measures ," Working Papers hal-02443841, HAL.
    11. Thibault Jaisson & Mathieu Rosenbaum, 2015. "Rough fractional diffusions as scaling limits of nearly unstable heavy tailed Hawkes processes," Papers 1504.03100, arXiv.org.
    12. Lingjiong Zhu, 2015. "A State-Dependent Dual Risk Model," Papers 1510.03920, arXiv.org, revised Feb 2023.
    13. Laurent Lesage & Madalina Deaconu & Antoine Lejay & Jorge Augusto Meira & Geoffrey Nichil & Radu State, 2020. "Hawkes processes framework with a Gamma density as excitation function: application to natural disasters for insurance," Working Papers hal-03040090, HAL.
    14. Laurent Lesage & Madalina Deaconu & Antoine Lejay & Jorge Augusto Meira & Geoffrey Nichil & Radu State, 2022. "Hawkes processes framework with a Gamma density as excitation function: application to natural disasters for insurance," Post-Print hal-03040090, HAL.
    15. Behzad Mehrdad & Lingjiong Zhu, 2014. "On the Hawkes Process with Different Exciting Functions," Papers 1403.0994, arXiv.org, revised Sep 2017.
    16. Emmanuel Bacry & Thibault Jaisson & Jean-Francois Muzy, 2014. "Estimation of slowly decreasing Hawkes kernels: Application to high frequency order book modelling," Papers 1412.7096, arXiv.org.
    17. Seol, Youngsoo, 2015. "Limit theorems for discrete Hawkes processes," Statistics & Probability Letters, Elsevier, vol. 99(C), pages 223-229.
    18. Dassios, Angelos & Jang, Jiwook & Zhao, Hongbiao, 2019. "A generalised CIR process with externally-exciting and self-exciting jumps and its applications in insurance and finance," LSE Research Online Documents on Economics 102043, London School of Economics and Political Science, LSE Library.
    19. Dassios, Angelos & Zhao, Hongbiao, 2017. "A generalised contagion process with an application to credit risk," LSE Research Online Documents on Economics 68558, London School of Economics and Political Science, LSE Library.
    20. Gao, Fuqing & Zhu, Lingjiong, 2018. "Some asymptotic results for nonlinear Hawkes processes," Stochastic Processes and their Applications, Elsevier, vol. 128(12), pages 4051-4077.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:9:p:1413-:d:800056. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.