IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v28y2023i6d10.1007_s11027-023-10067-4.html
   My bibliography  Save this article

A water resources assessment framework for management strategies of large coal-power bases development in China

Author

Listed:
  • Wang Xiao-jun

    (Nanjing Hydraulic Research Institute
    Research Center for Climate Change, Ministry of Water Resources)

  • Zhang Jian-yun

    (Nanjing Hydraulic Research Institute
    Research Center for Climate Change, Ministry of Water Resources)

  • Amgad Elmahdi

    (Head of Water Resources Section, Bureau of Meteorology
    Water Sector Lead, Green Climate Fund-GCF)

  • Shamsuddin Shahid

    (Universiti Teknologi Malaysia)

  • Gao Juan

    (Hohai University)

Abstract

China is a coal-rich country and produces 50% of the global total coal production. Coal is the source of 51.8% of total energy consumption and, therefore, the most critical and crucial driver of China’s economic development. The number of coal-fired power plants has increased rapidly in China in recent years to support economic growth, which has made the power plants the largest coal user (57.7%) in the country. With the continuous expansion of coal power plants, China’s coal production increased by 115 million tons per year from 2000 to 2020. This has caused a rapid increase in both water abstraction and the discharge of untreated wastewater, contributing to serious pollution, an imbalance between water supply and demand, groundwater overexploitation, and ecological degradation in the areas with extensive coal mining, coal-fired power generation, and the coal chemical industry. There is an urgent need for an in-depth study and assessment of the advances in the water resources management strategies in large coal-power bases to assess the impact and recommend the strategy for achieving sustainability in water resources. In this paper, a comprehensive, consistent, adaptable, and systematic water resource assessment framework is developed. The strategies are proposed for planning and managing large coal-power bases in China to fill the existing gap in the project planning, development, and implementation of coal mines and power plants and help China to become a carbon-neutral country by 2060.

Suggested Citation

  • Wang Xiao-jun & Zhang Jian-yun & Amgad Elmahdi & Shamsuddin Shahid & Gao Juan, 2023. "A water resources assessment framework for management strategies of large coal-power bases development in China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(6), pages 1-19, August.
  • Handle: RePEc:spr:masfgc:v:28:y:2023:i:6:d:10.1007_s11027-023-10067-4
    DOI: 10.1007/s11027-023-10067-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11027-023-10067-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11027-023-10067-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ryna Yiyun Cui & Nathan Hultman & Diyang Cui & Haewon McJeon & Sha Yu & Morgan R. Edwards & Arijit Sen & Kaihui Song & Christina Bowman & Leon Clarke & Junjie Kang & Jiehong Lou & Fuqiang Yang & Jiaha, 2021. "A plant-by-plant strategy for high-ambition coal power phaseout in China," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    2. Michelle T. H. van Vliet & David Wiberg & Sylvain Leduc & Keywan Riahi, 2016. "Power-generation system vulnerability and adaptation to changes in climate and water resources," Nature Climate Change, Nature, vol. 6(4), pages 375-380, April.
    3. Wang Xiao-jun & Zhang Jian-yun & Shamsuddin Shahid & Amgad ElMahdi & He Rui-min & Bao Zhen-xin & Mahtab Ali, 2012. "Water resources management strategy for adaptation to droughts in China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(8), pages 923-937, December.
    4. Xiao-jun Wang & Amgad Elmahdi & Jian-yun Zhang & Shamsuddin Shahid & Chuan-hua Liao & Xu Zhang & Yong-gang Liu, 2019. "Water use and demand forecasting model for coal-fired power generation plant in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(4), pages 1675-1693, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Liuyue & Xu, Zhenci & Wang, Sufen & Bao, Jianxia & Fan, Yunfei & Daccache, Andre, 2022. "Optimal crop planting pattern can be harmful to reach carbon neutrality: Evidence from food-energy-water-carbon nexus perspective," Applied Energy, Elsevier, vol. 308(C).
    2. Pavičević, Matija & De Felice, Matteo & Busch, Sebastian & Hidalgo González, Ignacio & Quoilin, Sylvain, 2021. "Water-energy nexus in African power pools – The Dispa-SET Africa model," Energy, Elsevier, vol. 228(C).
    3. Ayoub, Ali & Gjorgiev, Blaže & Sansavini, Giovanni, 2018. "Cooling towers performance in a changing climate: Techno-economic modeling and design optimization," Energy, Elsevier, vol. 160(C), pages 1133-1143.
    4. Zhou, Yuanchun & Ma, Mengdie & Gao, Peiqi & Xu, Qiming & Bi, Jun & Naren, Tuya, 2019. "Managing water resources from the energy - water nexus perspective under a changing climate: A case study of Jiangsu province, China," Energy Policy, Elsevier, vol. 126(C), pages 380-390.
    5. SarahM. Jordaan & Afreen Siddiqi & William Kakenmaster & AliceC. Hill, 2019. "The Climate Vulnerabilities of Global Nuclear Power," Global Environmental Politics, MIT Press, vol. 19(4), pages 3-13, November.
    6. Aleksejs Prozuments & Arturs Brahmanis & Armands Mucenieks & Vladislavs Jacnevs & Deniss Zajecs, 2022. "Preliminary Study of Various Cross-Sectional Metal Sheet Shapes in Adiabatic Evaporative Cooling Pads," Energies, MDPI, vol. 15(11), pages 1-10, May.
    7. Zhao, Ke-Xin & Xu, Fei-Ran & Zhou, Yan & Ma, Tao, 2024. "The heterogeneous effects of non-hydro renewable energy and water resources on industrial development of the Yellow river and Yangtze river basins," Energy, Elsevier, vol. 301(C).
    8. Omar A. de la Cruz Courtois & Maritza Liliana Arganis Juárez & Delva Guichard Romero, 2021. "Simulated Optimal Operation Policies of a Reservoir System Obtained with Continuous Functions Using Synthetic Inflows," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(7), pages 2249-2263, May.
    9. O'Connell, & Voisin, Nathalie & Macknick, & Fu,, 2019. "Sensitivity of Western U.S. power system dynamics to droughts compounded with fuel price variability," Applied Energy, Elsevier, vol. 247(C), pages 745-754.
    10. Sharma, Shailesh & Waldman, John & Afshari, Shahab & Fekete, Balazs, 2019. "Status, trends and significance of American hydropower in the changing energy landscape," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 112-122.
    11. Teotónio, Carla & Fortes, Patrícia & Roebeling, Peter & Rodriguez, Miguel & Robaina-Alves, Margarita, 2017. "Assessing the impacts of climate change on hydropower generation and the power sector in Portugal: A partial equilibrium approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 788-799.
    12. Wu, X.D. & Ji, Xi & Li, Chaohui & Xia, X.H. & Chen, G.Q., 2019. "Water footprint of thermal power in China: Implications from the high amount of industrial water use by plant infrastructure of coal-fired generation system," Energy Policy, Elsevier, vol. 132(C), pages 452-461.
    13. Kirsten Halsnæs & Lisa Bay & Mads Lykke Dømgaard & Per Skougaard Kaspersen & Morten Andreas Dahl Larsen, 2020. "Accelerating Climate Service Development for Renewable Energy, Finance and Cities," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
    14. Francesco Macheda, 2022. "Industrial Policies and State-Owned Enterprises: The Foundations of China’s Path Towards Decarbonization," L'industria, Società editrice il Mulino, issue 4, pages 581-619.
    15. Zhang, Yi & Cheng, Chuntian & Yang, Tiantian & Jin, Xiaoyu & Jia, Zebin & Shen, Jianjian & Wu, Xinyu, 2022. "Assessment of climate change impacts on the hydro-wind-solar energy supply system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    16. Marie-Noëlle WOILLEZ, 2019. "Revue de littérature sur le changement climatique au Maroc : observations, projections et impacts," Working Paper 7ae2aa2d-befc-471b-94be-9, Agence française de développement.
    17. Maamoun, Nada & Chitkara, Puneet & Yang, Joonseok & Shrimali, Gireesh & Busby, Joshua & Shidore, Sarang & Jin, Yana & Urpelainen, Johannes, 2022. "Identifying coal plants for early retirement in India: A multidimensional analysis of technical, economic, and environmental factors," Applied Energy, Elsevier, vol. 312(C).
    18. Diego Sesma-Martín, 2020. "Cooling Water: A Source of Conflict in Spain, 1970–1980," Sustainability, MDPI, vol. 12(11), pages 1-18, June.
    19. Longhui Li & Yue Zhang & Tianjun Zhou & Kaicun Wang & Can Wang & Tao Wang & Linwang Yuan & Kangxin An & Chenghu Zhou & Guonian Lü, 2022. "Mitigation of China’s carbon neutrality to global warming," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    20. Daniel C. Steinberg & Bryan K. Mignone & Jordan Macknick & Yinong Sun & Kelly Eurek & Andrew Badger & Ben Livneh & Kristen Averyt, 2020. "Decomposing supply-side and demand-side impacts of climate change on the US electricity system through 2050," Climatic Change, Springer, vol. 158(2), pages 125-139, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:28:y:2023:i:6:d:10.1007_s11027-023-10067-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.