IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v160y2018icp1133-1143.html
   My bibliography  Save this article

Cooling towers performance in a changing climate: Techno-economic modeling and design optimization

Author

Listed:
  • Ayoub, Ali
  • Gjorgiev, Blaže
  • Sansavini, Giovanni

Abstract

This paper presents a model of a natural draft wet type cooling tower, which is based on the conservation laws of thermodynamics. The model assesses the cooling abilities of a tower, the evaporation rate, and the amount of required make-up water, all represented as a function of the atmospheric conditions. The purpose of the model is to estimate the effects of extreme weather conditions on the thermodynamic efficiency of a natural draft wet type cooling tower. World climate is changing and average temperatures are anticipated to rise in the near future, thus affecting the electrical energy generation. To that aim, we study the climate change effects on the ability of natural draft wet type cooling towers to reject heat and hence on the electricity generation of thermal power plants. Additionally, we perform cost-based analyses of a cooling tower considering the long-term projections for air temperature increase, and exemplify our model with reference to a location in France. The results show a remarkable drop in the cooling tower efficiency, and, hence, significant electricity generation losses even when a small increase of atmospheric temperature above the cooling tower design temperature occurs. Furthermore, the results of the cost-based analysis show that large electricity losses are expected. However, the performed cost-based analyses, considering climate change projections, show that even with the highest temperature increase, there is no need for additional tower height. In other words, the concrete costs outweigh the generated revenues from the curtailed power as result of insufficient cooling.

Suggested Citation

  • Ayoub, Ali & Gjorgiev, Blaže & Sansavini, Giovanni, 2018. "Cooling towers performance in a changing climate: Techno-economic modeling and design optimization," Energy, Elsevier, vol. 160(C), pages 1133-1143.
  • Handle: RePEc:eee:energy:v:160:y:2018:i:c:p:1133-1143
    DOI: 10.1016/j.energy.2018.07.080
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421831377X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.07.080?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sanna L Read & Emily M D Grundy, 2017. "Fertility History and Cognition in Later Life," The Journals of Gerontology: Series B, The Gerontological Society of America, vol. 72(6), pages 1021-1031.
    2. James E. CURTIS Jr., 2017. "Differences in wealth, education, and history," Journal of Social and Administrative Sciences, KSP Journals, vol. 4(4), pages 398-417, December.
    3. Cui, Haijiao & Li, Nianping & Wang, Xinlei & Peng, Jinqing & Li, Yuan & Wu, Zhibin, 2017. "Optimization of reversibly used cooling tower with downward spraying," Energy, Elsevier, vol. 127(C), pages 30-43.
    4. Michelle T. H. van Vliet & John R. Yearsley & Fulco Ludwig & Stefan Vögele & Dennis P. Lettenmaier & Pavel Kabat, 2012. "Vulnerability of US and European electricity supply to climate change," Nature Climate Change, Nature, vol. 2(9), pages 676-681, September.
    5. Jeff Tollefson, 2016. "Nuclear power plants prepare for old age," Nature, Nature, vol. 537(7618), pages 16-17, September.
    6. Michelle T. H. van Vliet & David Wiberg & Sylvain Leduc & Keywan Riahi, 2016. "Power-generation system vulnerability and adaptation to changes in climate and water resources," Nature Climate Change, Nature, vol. 6(4), pages 375-380, April.
    7. Khamis Mansour, M. & Hassab, M.A., 2014. "Innovative correlation for calculating thermal performance of counterflow wet-cooling tower," Energy, Elsevier, vol. 74(C), pages 855-862.
    8. ., 2017. "An intellectual history of neoliberal thought," Chapters, in: A Research Agenda for Neoliberalism, chapter 2, pages 13-34, Edward Elgar Publishing.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, J.H. & Qu, Z.G. & Zhang, J.F. & Hu, S.J. & Guan, J., 2022. "Comprehensive coupling model of counter-flow wet cooling tower and its thermal performance analysis," Energy, Elsevier, vol. 238(PB).
    2. Carmelo J. Leon & Yen E. Lam González & Giovanni Ruggieri & Patrizia Calò, 2022. "Assessing Climate Change Adaptation and Risk Management Programmes: Stakeholder Participation Process and Policy Implications for Transport, Energy and Tourism Sectors on the Island of Sicily," Land, MDPI, vol. 11(8), pages 1-21, July.
    3. An, Keju & Farooqui, Azharuddin & McCoy, Sean T., 2022. "The impact of climate on solvent-based direct air capture systems," Applied Energy, Elsevier, vol. 325(C).
    4. Yang, Lin & Lv, Haodong & Jiang, Dalin & Fan, Jingli & Zhang, Xian & He, Weijun & Zhou, Jinsheng & Wu, Wenjing, 2020. "Whether CCS technologies will exacerbate the water crisis in China? —A full life-cycle analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    5. Xuchen Fan & Xiaofeng Lu & Jiping Wang & Zilong Li & Quanhai Wang & Zhonghao Dong & Rongdi Zhang, 2021. "Performance Evaluation of a Maisotsenko Cycle Cooling Tower with Uneven Length of Dry and Wet Channels in Hot and Humid Conditions," Energies, MDPI, vol. 14(24), pages 1-15, December.
    6. Javadpour, Reza & Zeinali Heris, Saeed & Mohammadfam, Yaghoub, 2021. "Optimizing the effect of concentration and flow rate of water/ MWCNTs nanofluid on the performance of a forced draft cross-flow cooling tower," Energy, Elsevier, vol. 217(C).
    7. Wu, Zhiyong & Lu, Zhibin & Zhang, Bingjian & He, Chang & Chen, Qinglin & Yu, Haoshui & Ren, Jingzheng, 2022. "Stochastic bi-objective optimization for closed wet cooling tower systems based on a simplified analytical model," Energy, Elsevier, vol. 250(C).
    8. Guerras, Lidia S. & Martín, Mariano, 2020. "On the water footprint in power production: Sustainable design of wet cooling towers," Applied Energy, Elsevier, vol. 263(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rezny, Lukas & White, James Buchanan & Maresova, Petra, 2019. "The knowledge economy: Key to sustainable development?," Structural Change and Economic Dynamics, Elsevier, vol. 51(C), pages 291-300.
    2. Gore, Christopher D. & Brass, Jennifer N. & Baldwin, Elizabeth & MacLean, Lauren M., 2019. "Political autonomy and resistance in electricity sector liberalization in Africa," World Development, Elsevier, vol. 120(C), pages 193-209.
    3. Perera, A.T.D. & Nik, Vahid M. & Wickramasinghe, P.U. & Scartezzini, Jean-Louis, 2019. "Redefining energy system flexibility for distributed energy system design," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    4. Moghaddam, Mahboobeh & Pearce, Robin H. & Mokhtar, Hamid & Prato, Carlo G., 2020. "A generalised model for container drayage operations with heterogeneous fleet, multi-container sizes and two modes of operation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 139(C).
    5. O'Connell, & Voisin, Nathalie & Macknick, & Fu,, 2019. "Sensitivity of Western U.S. power system dynamics to droughts compounded with fuel price variability," Applied Energy, Elsevier, vol. 247(C), pages 745-754.
    6. Craig, Christopher A. & Feng, Song, 2016. "An examination of electricity generation by utility organizations in the Southeast United States," Energy, Elsevier, vol. 116(P1), pages 601-608.
    7. Nagasawa, Kazunori & Davidson, F. Todd & Lloyd, Alan C. & Webber, Michael E., 2019. "Impacts of renewable hydrogen production from wind energy in electricity markets on potential hydrogen demand for light-duty vehicles," Applied Energy, Elsevier, vol. 235(C), pages 1001-1016.
    8. Qian Zhou & Naota Hanasaki & Shinichiro Fujimori, 2018. "Economic Consequences of Cooling Water Insufficiency in the Thermal Power Sector under Climate Change Scenarios," Energies, MDPI, vol. 11(10), pages 1-11, October.
    9. Gjorgiev, Blaže & Sansavini, Giovanni, 2018. "Electrical power generation under policy constrained water-energy nexus," Applied Energy, Elsevier, vol. 210(C), pages 568-579.
    10. Voisin, N. & Kintner-Meyer, M. & Skaggs, R. & Nguyen, T. & Wu, D. & Dirks, J. & Xie, Y. & Hejazi, M., 2016. "Vulnerability of the US western electric grid to hydro-climatological conditions: How bad can it get?," Energy, Elsevier, vol. 115(P1), pages 1-12.
    11. Pengbang Wei & Yufang Peng & Weidong Chen, 2022. "Climate change adaptation mechanisms and strategies of coal-fired power plants," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(8), pages 1-22, December.
    12. Jin, Yi & Scherer, Laura & Sutanudjaja, Edwin H. & Tukker, Arnold & Behrens, Paul, 2022. "Climate change and CCS increase the water vulnerability of China's thermoelectric power fleet," Energy, Elsevier, vol. 245(C).
    13. Tran, Thomas T.D. & Smith, Amanda D., 2018. "Incorporating performance-based global sensitivity and uncertainty analysis into LCOE calculations for emerging renewable energy technologies," Applied Energy, Elsevier, vol. 216(C), pages 157-171.
    14. Hilden, Mikael & Huuki, Hannu & Kivisaari, Visa & Kopsakangas-Savolainen, Maria, 2018. "The importance of transnational impacts of climate change in a power market," Energy Policy, Elsevier, vol. 115(C), pages 418-425.
    15. Cohen, Stuart M. & Dyreson, Ana & Turner, Sean & Tidwell, Vince & Voisin, Nathalie & Miara, Ariel, 2022. "A multi-model framework for assessing long- and short-term climate influences on the electric grid," Applied Energy, Elsevier, vol. 317(C).
    16. Pavičević, Matija & De Felice, Matteo & Busch, Sebastian & Hidalgo González, Ignacio & Quoilin, Sylvain, 2021. "Water-energy nexus in African power pools – The Dispa-SET Africa model," Energy, Elsevier, vol. 228(C).
    17. Zhou, Yuanchun & Ma, Mengdie & Gao, Peiqi & Xu, Qiming & Bi, Jun & Naren, Tuya, 2019. "Managing water resources from the energy - water nexus perspective under a changing climate: A case study of Jiangsu province, China," Energy Policy, Elsevier, vol. 126(C), pages 380-390.
    18. SarahM. Jordaan & Afreen Siddiqi & William Kakenmaster & AliceC. Hill, 2019. "The Climate Vulnerabilities of Global Nuclear Power," Global Environmental Politics, MIT Press, vol. 19(4), pages 3-13, November.
    19. Aleksejs Prozuments & Arturs Brahmanis & Armands Mucenieks & Vladislavs Jacnevs & Deniss Zajecs, 2022. "Preliminary Study of Various Cross-Sectional Metal Sheet Shapes in Adiabatic Evaporative Cooling Pads," Energies, MDPI, vol. 15(11), pages 1-10, May.
    20. Omar A. de la Cruz Courtois & Maritza Liliana Arganis Juárez & Delva Guichard Romero, 2021. "Simulated Optimal Operation Policies of a Reservoir System Obtained with Continuous Functions Using Synthetic Inflows," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(7), pages 2249-2263, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:160:y:2018:i:c:p:1133-1143. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.