IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v21y2019i4d10.1007_s10668-018-0124-0.html
   My bibliography  Save this article

Water use and demand forecasting model for coal-fired power generation plant in China

Author

Listed:
  • Xiao-jun Wang

    (Nanjing Hydraulic Research Institute
    Research Center for Climate Change, Ministry of Water Resources)

  • Amgad Elmahdi

    (Bureau of Meteorology)

  • Jian-yun Zhang

    (Nanjing Hydraulic Research Institute
    Research Center for Climate Change, Ministry of Water Resources)

  • Shamsuddin Shahid

    (Universiti Teknologi Malaysia)

  • Chuan-hua Liao

    (Nanjing Tech University)

  • Xu Zhang

    (Nanjing Hydraulic Research Institute
    Research Center for Climate Change, Ministry of Water Resources)

  • Yong-gang Liu

    (Water Resources Management Office of Shaanxi Province)

Abstract

China is planning to expand its coal power generation to meet its energy demand and support the economic development. The current level of water use for thermal power generation is 8% of total water use, China is a water-stressed country which is facing many new challenges including climate change and population growth. China’s future coal power industry will add further pressures on already stressed water resources. This raised the key question on how the limited water resources can be managed to meet the demand of planned coal power expansion. A great level of understanding on the present status of water use and forecasting future demand in coal power plant is very important to answer this question. However, knowledge gap, data availability and accessibility are the major challenge in this regard. This paper attempts to improve the knowledge of the water demand in the coal power generation plant in China by using a simple water use model. Furthermore, a method is proposed to forecast future water demand in coal power plant. The proposed method is applied for forecasting water demand in Shaanxi coal power bases in Northern China under four scenarios. The results showed that the future water demand for Shaanxi coal power base will increase by 102–161% compared to current use under different scenarios in order to increase the production capacity by 206%. Adopting the optimum level of current status of water use, it is possible to limit the increase in water demand by 102% or 47.119 million-m3. It is expected that the finding of the study would help decision-making processes in water resources management in Chinese coal power generation.

Suggested Citation

  • Xiao-jun Wang & Amgad Elmahdi & Jian-yun Zhang & Shamsuddin Shahid & Chuan-hua Liao & Xu Zhang & Yong-gang Liu, 2019. "Water use and demand forecasting model for coal-fired power generation plant in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(4), pages 1675-1693, August.
  • Handle: RePEc:spr:endesu:v:21:y:2019:i:4:d:10.1007_s10668-018-0124-0
    DOI: 10.1007/s10668-018-0124-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-018-0124-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-018-0124-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. World Bank, 2002. "China : Country Water Resources Assistance Strategy," World Bank Publications - Reports 15526, The World Bank Group.
    2. Michelle T. H. van Vliet & David Wiberg & Sylvain Leduc & Keywan Riahi, 2016. "Power-generation system vulnerability and adaptation to changes in climate and water resources," Nature Climate Change, Nature, vol. 6(4), pages 375-380, April.
    3. Zhu, Xiaojie & Guo, Ruipeng & Chen, Bin & Zhang, Jing & Hayat, Tasawar & Alsaedi, Ahmed, 2015. "Embodiment of virtual water of power generation in the electric power system in China," Applied Energy, Elsevier, vol. 151(C), pages 345-354.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad Rajab Houmsi & Mohammed Sanusi Shiru & Mohamed Salem Nashwan & Kamal Ahmed & Ghaith Falah Ziarh & Shamsuddin Shahid & Eun-Sung Chung & Sungkon Kim, 2019. "Spatial Shift of Aridity and Its Impact on Land Use of Syria," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
    2. Wang Xiao-jun & Zhang Jian-yun & Amgad Elmahdi & Shamsuddin Shahid & Gao Juan, 2023. "A water resources assessment framework for management strategies of large coal-power bases development in China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(6), pages 1-19, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Yuanchun & Ma, Mengdie & Gao, Peiqi & Xu, Qiming & Bi, Jun & Naren, Tuya, 2019. "Managing water resources from the energy - water nexus perspective under a changing climate: A case study of Jiangsu province, China," Energy Policy, Elsevier, vol. 126(C), pages 380-390.
    2. Panda, Manas Ranjan & Tyagi, Arjun & Dhanya, C.T. & Verma, Ashu & Swain, Anshuman, 2023. "Vulnerability assessment of thermal power plants in India under water stress conditions," Energy, Elsevier, vol. 276(C).
    3. Yiyi Zhang & Huanzhi Fu & Xinghua He & Zhen Shi & Tao Hai & Peng Liu & Shan Xi & Kai Zhang, 2023. "Electricity-Related Water Network Analysis in China Based on Multi-Regional Input–Output Analysis and Complex Network Analysis," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
    4. Logan, Lauren H. & Stillwell, Ashlynn S., 2018. "Probabilistic assessment of aquatic species risk from thermoelectric power plant effluent: Incorporating biology into the energy-water nexus," Applied Energy, Elsevier, vol. 210(C), pages 434-450.
    5. Yan, Xia & Jie, Wu & Minjun, Shi & Shouyang, Wang & Zhuoying, Zhang, 2022. "China's regional imbalance in electricity demand, power and water pricing - From the perspective of electricity-related virtual water transmission," Energy, Elsevier, vol. 257(C).
    6. Pavičević, Matija & De Felice, Matteo & Busch, Sebastian & Hidalgo González, Ignacio & Quoilin, Sylvain, 2021. "Water-energy nexus in African power pools – The Dispa-SET Africa model," Energy, Elsevier, vol. 228(C).
    7. Ayoub, Ali & Gjorgiev, Blaže & Sansavini, Giovanni, 2018. "Cooling towers performance in a changing climate: Techno-economic modeling and design optimization," Energy, Elsevier, vol. 160(C), pages 1133-1143.
    8. SarahM. Jordaan & Afreen Siddiqi & William Kakenmaster & AliceC. Hill, 2019. "The Climate Vulnerabilities of Global Nuclear Power," Global Environmental Politics, MIT Press, vol. 19(4), pages 3-13, November.
    9. Aleksejs Prozuments & Arturs Brahmanis & Armands Mucenieks & Vladislavs Jacnevs & Deniss Zajecs, 2022. "Preliminary Study of Various Cross-Sectional Metal Sheet Shapes in Adiabatic Evaporative Cooling Pads," Energies, MDPI, vol. 15(11), pages 1-10, May.
    10. Omar A. de la Cruz Courtois & Maritza Liliana Arganis Juárez & Delva Guichard Romero, 2021. "Simulated Optimal Operation Policies of a Reservoir System Obtained with Continuous Functions Using Synthetic Inflows," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(7), pages 2249-2263, May.
    11. O'Connell, & Voisin, Nathalie & Macknick, & Fu,, 2019. "Sensitivity of Western U.S. power system dynamics to droughts compounded with fuel price variability," Applied Energy, Elsevier, vol. 247(C), pages 745-754.
    12. Wang, Saige & Cao, Tao & Chen, Bin, 2017. "Urban energy–water nexus based on modified input–output analysis," Applied Energy, Elsevier, vol. 196(C), pages 208-217.
    13. Sharma, Shailesh & Waldman, John & Afshari, Shahab & Fekete, Balazs, 2019. "Status, trends and significance of American hydropower in the changing energy landscape," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 112-122.
    14. Teotónio, Carla & Fortes, Patrícia & Roebeling, Peter & Rodriguez, Miguel & Robaina-Alves, Margarita, 2017. "Assessing the impacts of climate change on hydropower generation and the power sector in Portugal: A partial equilibrium approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 788-799.
    15. Wu, X.D. & Ji, Xi & Li, Chaohui & Xia, X.H. & Chen, G.Q., 2019. "Water footprint of thermal power in China: Implications from the high amount of industrial water use by plant infrastructure of coal-fired generation system," Energy Policy, Elsevier, vol. 132(C), pages 452-461.
    16. Guo, Shenghui & Meng, Fanrui & Peng, Pai & Xu, Jialing & Jin, Hui & Chen, Yunan & Guo, Liejin, 2022. "Thermodynamic analysis of the superiority of the direct mass transfer design in the supercritical water gasification system," Energy, Elsevier, vol. 244(PA).
    17. Kirsten Halsnæs & Lisa Bay & Mads Lykke Dømgaard & Per Skougaard Kaspersen & Morten Andreas Dahl Larsen, 2020. "Accelerating Climate Service Development for Renewable Energy, Finance and Cities," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
    18. Jin, Yi & Tang, Xu & Feng, Cuiyang & Höök, Mikael, 2017. "Energy and water conservation synergy in China: 2007–2012," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 206-215.
    19. Zhang, Yi & Cheng, Chuntian & Yang, Tiantian & Jin, Xiaoyu & Jia, Zebin & Shen, Jianjian & Wu, Xinyu, 2022. "Assessment of climate change impacts on the hydro-wind-solar energy supply system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    20. Marie-Noëlle WOILLEZ, 2019. "Revue de littérature sur le changement climatique au Maroc : observations, projections et impacts," Working Paper 7ae2aa2d-befc-471b-94be-9, Agence française de développement.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:21:y:2019:i:4:d:10.1007_s10668-018-0124-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.