IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v74y2018i1p77-85.html
   My bibliography  Save this article

Simple and fast overidentified rank estimation for right†censored length†biased data and backward recurrence time

Author

Listed:
  • Yifei Sun
  • Kwun Chuen Gary Chan
  • Jing Qin

Abstract

Length†biased survival data subject to right†censoring are often collected from a prevalent cohort. However, informative right censoring induced by the sampling design creates challenges in methodological development. While certain conditioning arguments could circumvent the problem of informative censoring, related rank estimation methods are typically inefficient because the marginal likelihood of the backward recurrence time is not ancillary. Under a semiparametric accelerated failure time model, an overidentified set of log†rank estimating equations is constructed based on the left†truncated right†censored data and backward recurrence time. Efficient combination of the estimating equations is simplified by exploiting an asymptotic independence property between two sets of estimating equations. A fast algorithm is studied for solving non†smooth, non†monotone estimating equations. Simulation studies confirm that the overidentified rank estimator can have a substantially improved estimation efficiency compared to just†identified rank estimators. The proposed method is applied to a dementia study for illustration.

Suggested Citation

  • Yifei Sun & Kwun Chuen Gary Chan & Jing Qin, 2018. "Simple and fast overidentified rank estimation for right†censored length†biased data and backward recurrence time," Biometrics, The International Biometric Society, vol. 74(1), pages 77-85, March.
  • Handle: RePEc:bla:biomet:v:74:y:2018:i:1:p:77-85
    DOI: 10.1111/biom.12727
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.12727
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.12727?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yuanyuan Lin & Kani Chen, 2013. "Efficient estimation of the censored linear regression model," Biometrika, Biometrika Trust, vol. 100(2), pages 525-530.
    2. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    3. Ying Qing Chen, 2010. "Semiparametric Regression in Size-Biased Sampling," Biometrics, The International Biometric Society, vol. 66(1), pages 149-158, March.
    4. Hui Li & Guosheng Yin, 2009. "Generalized method of moments estimation for linear regression with clustered failure time data," Biometrika, Biometrika Trust, vol. 96(4), pages 1024-1024.
    5. Chiung-yu Huang & Jing Qin, 2012. "Composite Partial Likelihood Estimation Under Length-Biased Sampling, With Application to a Prevalent Cohort Study of Dementia," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 946-957, September.
    6. Shen, Yu & Ning, Jing & Qin, Jing, 2009. "Analyzing Length-Biased Data With Semiparametric Transformation and Accelerated Failure Time Models," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1192-1202.
    7. Jing Ning & Jing Qin & Yu Shen, 2011. "Buckley–James-Type Estimator with Right-Censored and Length-Biased Data," Biometrics, The International Biometric Society, vol. 67(4), pages 1369-1378, December.
    8. Zhezhen Jin, 2003. "Rank-based inference for the accelerated failure time model," Biometrika, Biometrika Trust, vol. 90(2), pages 341-353, June.
    9. Yijian Huang, 2013. "Fast Censored Linear Regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(4), pages 789-806, December.
    10. Micha Mandel & Ya'akov Ritov, 2010. "The Accelerated Failure Time Model Under Biased Sampling," Biometrics, The International Biometric Society, vol. 66(4), pages 1306-1308, December.
    11. Hui Li & Guosheng Yin, 2009. "Generalized method of moments estimation for linear regression with clustered failure time data," Biometrika, Biometrika Trust, vol. 96(2), pages 293-306.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhiping Qiu & Jing Qin & Yong Zhou, 2016. "Composite Estimating Equation Method for the Accelerated Failure Time Model with Length-biased Sampling Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 396-415, June.
    2. Yu Shen & Jing Ning & Jing Qin, 2017. "Nonparametric and semiparametric regression estimation for length-biased survival data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(1), pages 3-24, January.
    3. Gongjun Xu & Tony Sit & Lan Wang & Chiung-Yu Huang, 2017. "Estimation and Inference of Quantile Regression for Survival Data Under Biased Sampling," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1571-1586, October.
    4. Jung-Yu Cheng & Shinn-Jia Tzeng, 2014. "Quantile regression of right-censored length-biased data using the Buckley–James-type method," Computational Statistics, Springer, vol. 29(6), pages 1571-1592, December.
    5. Jing Ning & Jing Qin & Yu Shen, 2011. "Buckley–James-Type Estimator with Right-Censored and Length-Biased Data," Biometrics, The International Biometric Society, vol. 67(4), pages 1369-1378, December.
    6. Hui Li & Xiaogang Duan & Guosheng Yin, 2016. "Generalized Method of Moments for Additive Hazards Model with Clustered Dental Survival Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(4), pages 1124-1139, December.
    7. Jing Ning & Jing Qin & Yu Shen, 2014. "Score Estimating Equations from Embedded Likelihood Functions Under Accelerated Failure Time Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1625-1635, December.
    8. Ying Sheng & Yifei Sun & Detian Deng & Chiung‐Yu Huang, 2020. "Censored linear regression in the presence or absence of auxiliary survival information," Biometrics, The International Biometric Society, vol. 76(3), pages 734-745, September.
    9. Wenjing Yin & Sihai Dave Zhao & Feng Liang, 2022. "Bayesian penalized Buckley-James method for high dimensional bivariate censored regression models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(2), pages 282-318, April.
    10. Shang, Wenpeng & Wang, Xiao, 2017. "The generalized moment estimation of the additive–multiplicative hazard model with auxiliary survival information," Computational Statistics & Data Analysis, Elsevier, vol. 112(C), pages 154-169.
    11. Chi Hyun Lee & Jing Ning & Yu Shen, 2019. "Model diagnostics for the proportional hazards model with length-biased data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(1), pages 79-96, January.
    12. Ma, Huijuan & Zhang, Feipeng & Zhou, Yong, 2015. "Composite estimating equation approach for additive risk model with length-biased and right-censored data," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 45-53.
    13. James H. McVittie & Ana F. Best & David B. Wolfson & David A. Stephens & Julian Wolfson & David L. Buckeridge & Shahinaz M. Gadalla, 2023. "Survival Modelling for Data From Combined Cohorts: Opening the Door to Meta Survival Analyses and Survival Analysis Using Electronic Health Records," International Statistical Review, International Statistical Institute, vol. 91(1), pages 72-87, April.
    14. Lin, Cunjie & Zhou, Yong, 2014. "Analyzing right-censored and length-biased data with varying-coefficient transformation model," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 45-63.
    15. Peijie Wang & Danning Li & Jianguo Sun, 2021. "A pairwise pseudo‐likelihood approach for left‐truncated and interval‐censored data under the Cox model," Biometrics, The International Biometric Society, vol. 77(4), pages 1303-1314, December.
    16. Fei Gao & Kwun Chuen Gary Chan, 2019. "Semiparametric regression analysis of length‐biased interval‐censored data," Biometrics, The International Biometric Society, vol. 75(1), pages 121-132, March.
    17. Chengbo Li & Yong Zhou, 2021. "The estimation for the general additive–multiplicative hazard model using the length-biased survival data," Statistical Papers, Springer, vol. 62(1), pages 53-74, February.
    18. Zhang, Qiaozhen & Dai, Hongsheng & Fu, Bo, 2016. "A proportional hazards model for time-to-event data with epidemiological bias," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 224-236.
    19. Yu-Jen Cheng & Chiung-Yu Huang, 2014. "Combined estimating equation approaches for semiparametric transformation models with length-biased survival data," Biometrics, The International Biometric Society, vol. 70(3), pages 608-618, September.
    20. Tianyi Lu & Shuwei Li & Liuquan Sun, 2023. "Combined estimating equation approaches for the additive hazards model with left-truncated and interval-censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(3), pages 672-697, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:74:y:2018:i:1:p:77-85. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.