IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v75y2019i1p121-132.html
   My bibliography  Save this article

Semiparametric regression analysis of length‐biased interval‐censored data

Author

Listed:
  • Fei Gao
  • Kwun Chuen Gary Chan

Abstract

In prevalent cohort design, subjects who have experienced an initial event but not the failure event are preferentially enrolled and the observed failure times are often length‐biased. Moreover, the prospective follow‐up may not be continuously monitored and failure times are subject to interval censoring. We study the nonparametric maximum likelihood estimation for the proportional hazards model with length‐biased interval‐censored data. Direct maximization of likelihood function is intractable, thus we develop a computationally simple and stable expectation‐maximization algorithm through introducing two layers of data augmentation. We establish the strong consistency, asymptotic normality and efficiency of the proposed estimator and provide an inferential procedure through profile likelihood. We assess the performance of the proposed methods through extensive simulations and apply the proposed methods to the Massachusetts Health Care Panel Study.

Suggested Citation

  • Fei Gao & Kwun Chuen Gary Chan, 2019. "Semiparametric regression analysis of length‐biased interval‐censored data," Biometrics, The International Biometric Society, vol. 75(1), pages 121-132, March.
  • Handle: RePEc:bla:biomet:v:75:y:2019:i:1:p:121-132
    DOI: 10.1111/biom.12970
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.12970
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.12970?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lu Mao & Dan-Yu Lin & Donglin Zeng, 2017. "Semiparametric regression analysis of interval-censored competing risks data," Biometrics, The International Biometric Society, vol. 73(3), pages 857-865, September.
    2. Donglin Zeng & Fei Gao & D. Y. Lin, 2017. "Maximum likelihood estimation for semiparametric regression models with multivariate interval-censored data," Biometrika, Biometrika Trust, vol. 104(3), pages 505-525.
    3. Pan, Wei & Chappell, Rick, 1998. "Computation of the NPMLE of distribution functions for interval censored and truncated data with applications to the Cox model," Computational Statistics & Data Analysis, Elsevier, vol. 28(1), pages 33-50, July.
    4. Micha Mandel & Rebecca A. Betensky, 2007. "Testing Goodness of Fit of a Uniform Truncation Model," Biometrics, The International Biometric Society, vol. 63(2), pages 405-412, June.
    5. Chiung-yu Huang & Jing Qin, 2012. "Composite Partial Likelihood Estimation Under Length-Biased Sampling, With Application to a Prevalent Cohort Study of Dementia," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 946-957, September.
    6. Shen, Yu & Ning, Jing & Qin, Jing, 2009. "Analyzing Length-Biased Data With Semiparametric Transformation and Accelerated Failure Time Models," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1192-1202.
    7. Lianming Wang & Christopher S. McMahan & Michael G. Hudgens & Zaina P. Qureshi, 2016. "A flexible, computationally efficient method for fitting the proportional hazards model to interval-censored data," Biometrics, The International Biometric Society, vol. 72(1), pages 222-231, March.
    8. Jing Qin & Yu Shen, 2010. "Statistical Methods for Analyzing Right-Censored Length-Biased Data under Cox Model," Biometrics, The International Biometric Society, vol. 66(2), pages 382-392, June.
    9. Donglin Zeng & Lu Mao & D. Y. Lin, 2016. "Maximum likelihood estimation for semiparametric transformation models with interval-censored data," Biometrika, Biometrika Trust, vol. 103(2), pages 253-271.
    10. Tianxi Cai & Rebecca A. Betensky, 2003. "Hazard Regression for Interval-Censored Data with Penalized Spline," Biometrics, The International Biometric Society, vol. 59(3), pages 570-579, September.
    11. Wei Pan & Rick Chappell, 2002. "Estimation in the Cox Proportional Hazards Model with Left-Truncated and Interval-Censored Data," Biometrics, The International Biometric Society, vol. 58(1), pages 64-70, March.
    12. Michael G. Hudgens, 2005. "On nonparametric maximum likelihood estimation with interval censoring and left truncation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(4), pages 573-587, September.
    13. Peijie Wang & Xingwei Tong & Shishun Zhao & Jianguo Sun, 2015. "Regression Analysis of Left-truncated and Case I Interval-censored Data with the Additive Hazards Model," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 44(8), pages 1537-1551, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peijie Wang & Danning Li & Jianguo Sun, 2021. "A pairwise pseudo‐likelihood approach for left‐truncated and interval‐censored data under the Cox model," Biometrics, The International Biometric Society, vol. 77(4), pages 1303-1314, December.
    2. Tianyi Lu & Shuwei Li & Liuquan Sun, 2023. "Combined estimating equation approaches for the additive hazards model with left-truncated and interval-censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(3), pages 672-697, July.
    3. Tao Sun & Ying Ding, 2023. "Neural network on interval‐censored data with application to the prediction of Alzheimer's disease," Biometrics, The International Biometric Society, vol. 79(3), pages 2677-2690, September.
    4. Li‐Pang Chen & Bangxu Qiu, 2023. "Analysis of length‐biased and partly interval‐censored survival data with mismeasured covariates," Biometrics, The International Biometric Society, vol. 79(4), pages 3929-3940, December.
    5. Fan Feng & Guanghui Cheng & Jianguo Sun, 2023. "Variable Selection for Length-Biased and Interval-Censored Failure Time Data," Mathematics, MDPI, vol. 11(22), pages 1-20, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu Shen & Jing Ning & Jing Qin, 2017. "Nonparametric and semiparametric regression estimation for length-biased survival data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(1), pages 3-24, January.
    2. Tianyi Lu & Shuwei Li & Liuquan Sun, 2023. "Combined estimating equation approaches for the additive hazards model with left-truncated and interval-censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(3), pages 672-697, July.
    3. Zhiping Qiu & Jing Qin & Yong Zhou, 2016. "Composite Estimating Equation Method for the Accelerated Failure Time Model with Length-biased Sampling Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 396-415, June.
    4. Chi Hyun Lee & Jing Ning & Yu Shen, 2019. "Model diagnostics for the proportional hazards model with length-biased data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(1), pages 79-96, January.
    5. Ma, Huijuan & Zhang, Feipeng & Zhou, Yong, 2015. "Composite estimating equation approach for additive risk model with length-biased and right-censored data," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 45-53.
    6. Chengbo Li & Yong Zhou, 2021. "The estimation for the general additive–multiplicative hazard model using the length-biased survival data," Statistical Papers, Springer, vol. 62(1), pages 53-74, February.
    7. Zhang, Qiaozhen & Dai, Hongsheng & Fu, Bo, 2016. "A proportional hazards model for time-to-event data with epidemiological bias," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 224-236.
    8. Fan Wu & Sehee Kim & Jing Qin & Rajiv Saran & Yi Li, 2018. "A pairwise likelihood augmented Cox estimator for left†truncated data," Biometrics, The International Biometric Society, vol. 74(1), pages 100-108, March.
    9. Liu, Wenting & Li, Huiqiong & Tang, Niansheng & Lyu, Jun, 2024. "Variational Bayesian approach for analyzing interval-censored data under the proportional hazards model," Computational Statistics & Data Analysis, Elsevier, vol. 195(C).
    10. Shuwei Li & Limin Peng, 2023. "Instrumental variable estimation of complier causal treatment effect with interval‐censored data," Biometrics, The International Biometric Society, vol. 79(1), pages 253-263, March.
    11. Li‐Pang Chen & Bangxu Qiu, 2023. "Analysis of length‐biased and partly interval‐censored survival data with mismeasured covariates," Biometrics, The International Biometric Society, vol. 79(4), pages 3929-3940, December.
    12. Liuquan Sun & Shuwei Li & Lianming Wang & Xinyuan Song & Xuemei Sui, 2022. "Simultaneous variable selection in regression analysis of multivariate interval‐censored data," Biometrics, The International Biometric Society, vol. 78(4), pages 1402-1413, December.
    13. Shi, Jianhua & Ma, Huijuan & Zhou, Yong, 2018. "The nonparametric quantile estimation for length-biased and right-censored data," Statistics & Probability Letters, Elsevier, vol. 134(C), pages 150-158.
    14. Fan Feng & Guanghui Cheng & Jianguo Sun, 2023. "Variable Selection for Length-Biased and Interval-Censored Failure Time Data," Mathematics, MDPI, vol. 11(22), pages 1-20, November.
    15. Peijie Wang & Danning Li & Jianguo Sun, 2021. "A pairwise pseudo‐likelihood approach for left‐truncated and interval‐censored data under the Cox model," Biometrics, The International Biometric Society, vol. 77(4), pages 1303-1314, December.
    16. Yi, Fengting & Tang, Niansheng & Sun, Jianguo, 2020. "Regression analysis of interval-censored failure time data with time-dependent covariates," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    17. Qingning Zhou & Jianwen Cai & Haibo Zhou, 2018. "Outcome†dependent sampling with interval†censored failure time data," Biometrics, The International Biometric Society, vol. 74(1), pages 58-67, March.
    18. Zexi Cai & Tony Sit, 2020. "Censored quantile regression model with time‐varying covariates under length‐biased sampling," Biometrics, The International Biometric Society, vol. 76(4), pages 1201-1215, December.
    19. Prabhashi W. Withana Gamage & Monica Chaudari & Christopher S. McMahan & Edwin H. Kim & Michael R. Kosorok, 2020. "An extended proportional hazards model for interval-censored data subject to instantaneous failures," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(1), pages 158-182, January.
    20. Bella Vakulenko-Lagun & Micha Mandel & Yair Goldberg, 2017. "Nonparametric estimation in the illness-death model using prevalent data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(1), pages 25-56, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:75:y:2019:i:1:p:121-132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.