IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v77y2021i4p1303-1314.html
   My bibliography  Save this article

A pairwise pseudo‐likelihood approach for left‐truncated and interval‐censored data under the Cox model

Author

Listed:
  • Peijie Wang
  • Danning Li
  • Jianguo Sun

Abstract

Left truncation commonly occurs in many areas, and many methods have been proposed in the literature for the analysis of various types of left‐truncated failure time data. For the situation, a common approach is to conduct the analysis conditional on truncation times, and the method is relatively simple but may not be efficient. In this paper, we discuss regression analysis of such data arising from the proportional hazards model that also suffer interval censoring. For the problem, a pairwise pseudo‐likelihood approach is proposed that aims to recover some missing information in the conditional methods. The resulting estimator is shown to be consistent and asymptotically normal. A simulation study is conducted to assess the performance of the proposed method and suggests that it works well in practical situations and is indeed more efficient than the existing method. The approach is also applied to a set of real data arising from an AIDS cohort study.

Suggested Citation

  • Peijie Wang & Danning Li & Jianguo Sun, 2021. "A pairwise pseudo‐likelihood approach for left‐truncated and interval‐censored data under the Cox model," Biometrics, The International Biometric Society, vol. 77(4), pages 1303-1314, December.
  • Handle: RePEc:bla:biomet:v:77:y:2021:i:4:p:1303-1314
    DOI: 10.1111/biom.13394
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13394
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13394?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chen, Xiaohong & Fan, Yanqin & Tsyrennikov, Viktor, 2006. "Efficient Estimation of Semiparametric Multivariate Copula Models," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1228-1240, September.
    2. Yu Shen & Jing Ning & Jing Qin, 2017. "Nonparametric and semiparametric regression estimation for length-biased survival data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(1), pages 3-24, January.
    3. Chiung-Yu Huang & Jing Qin, 2013. "Semiparametric estimation for the additive hazards model with left-truncated and right-censored data," Biometrika, Biometrika Trust, vol. 100(4), pages 877-888.
    4. Chiung-yu Huang & Jing Qin, 2012. "Composite Partial Likelihood Estimation Under Length-Biased Sampling, With Application to a Prevalent Cohort Study of Dementia," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 946-957, September.
    5. Fan Wu & Sehee Kim & Jing Qin & Rajiv Saran & Yi Li, 2018. "A pairwise likelihood augmented Cox estimator for left†truncated data," Biometrics, The International Biometric Society, vol. 74(1), pages 100-108, March.
    6. Shen, Yu & Ning, Jing & Qin, Jing, 2009. "Analyzing Length-Biased Data With Semiparametric Transformation and Accelerated Failure Time Models," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1192-1202.
    7. Wei Pan & Rick Chappell, 2002. "Estimation in the Cox Proportional Hazards Model with Left-Truncated and Interval-Censored Data," Biometrics, The International Biometric Society, vol. 58(1), pages 64-70, March.
    8. Qingning Zhou & Tao Hu & Jianguo Sun, 2017. "A Sieve Semiparametric Maximum Likelihood Approach for Regression Analysis of Bivariate Interval-Censored Failure Time Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 664-672, April.
    9. Fei Gao & Kwun Chuen Gary Chan, 2019. "Semiparametric regression analysis of length‐biased interval‐censored data," Biometrics, The International Biometric Society, vol. 75(1), pages 121-132, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tianyi Lu & Shuwei Li & Liuquan Sun, 2023. "Combined estimating equation approaches for the additive hazards model with left-truncated and interval-censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(3), pages 672-697, July.
    2. Li‐Pang Chen & Bangxu Qiu, 2023. "Analysis of length‐biased and partly interval‐censored survival data with mismeasured covariates," Biometrics, The International Biometric Society, vol. 79(4), pages 3929-3940, December.
    3. Tao Sun & Ying Ding, 2023. "Neural network on interval‐censored data with application to the prediction of Alzheimer's disease," Biometrics, The International Biometric Society, vol. 79(3), pages 2677-2690, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tianyi Lu & Shuwei Li & Liuquan Sun, 2023. "Combined estimating equation approaches for the additive hazards model with left-truncated and interval-censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(3), pages 672-697, July.
    2. Yu Shen & Jing Ning & Jing Qin, 2017. "Nonparametric and semiparametric regression estimation for length-biased survival data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(1), pages 3-24, January.
    3. Ma, Huijuan & Zhang, Feipeng & Zhou, Yong, 2015. "Composite estimating equation approach for additive risk model with length-biased and right-censored data," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 45-53.
    4. James H. McVittie & Ana F. Best & David B. Wolfson & David A. Stephens & Julian Wolfson & David L. Buckeridge & Shahinaz M. Gadalla, 2023. "Survival Modelling for Data From Combined Cohorts: Opening the Door to Meta Survival Analyses and Survival Analysis Using Electronic Health Records," International Statistical Review, International Statistical Institute, vol. 91(1), pages 72-87, April.
    5. Fei Gao & Kwun Chuen Gary Chan, 2019. "Semiparametric regression analysis of length‐biased interval‐censored data," Biometrics, The International Biometric Society, vol. 75(1), pages 121-132, March.
    6. Fan Wu & Sehee Kim & Jing Qin & Rajiv Saran & Yi Li, 2018. "A pairwise likelihood augmented Cox estimator for left†truncated data," Biometrics, The International Biometric Society, vol. 74(1), pages 100-108, March.
    7. Zhiping Qiu & Jing Qin & Yong Zhou, 2016. "Composite Estimating Equation Method for the Accelerated Failure Time Model with Length-biased Sampling Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 396-415, June.
    8. Chi Hyun Lee & Jing Ning & Yu Shen, 2019. "Model diagnostics for the proportional hazards model with length-biased data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(1), pages 79-96, January.
    9. Yifei Sun & Kwun Chuen Gary Chan & Jing Qin, 2018. "Simple and fast overidentified rank estimation for right†censored length†biased data and backward recurrence time," Biometrics, The International Biometric Society, vol. 74(1), pages 77-85, March.
    10. Fan Feng & Guanghui Cheng & Jianguo Sun, 2023. "Variable Selection for Length-Biased and Interval-Censored Failure Time Data," Mathematics, MDPI, vol. 11(22), pages 1-20, November.
    11. Chengbo Li & Yong Zhou, 2021. "The estimation for the general additive–multiplicative hazard model using the length-biased survival data," Statistical Papers, Springer, vol. 62(1), pages 53-74, February.
    12. Zhang, Qiaozhen & Dai, Hongsheng & Fu, Bo, 2016. "A proportional hazards model for time-to-event data with epidemiological bias," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 224-236.
    13. Gongjun Xu & Tony Sit & Lan Wang & Chiung-Yu Huang, 2017. "Estimation and Inference of Quantile Regression for Survival Data Under Biased Sampling," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1571-1586, October.
    14. Yu-Jen Cheng & Chiung-Yu Huang, 2014. "Combined estimating equation approaches for semiparametric transformation models with length-biased survival data," Biometrics, The International Biometric Society, vol. 70(3), pages 608-618, September.
    15. Pao-sheng Shen & Yingwei Peng & Hsin-Jen Chen & Chyong-Mei Chen, 2022. "Maximum likelihood estimation for length-biased and interval-censored data with a nonsusceptible fraction," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(1), pages 68-88, January.
    16. Li‐Pang Chen & Bangxu Qiu, 2023. "Analysis of length‐biased and partly interval‐censored survival data with mismeasured covariates," Biometrics, The International Biometric Society, vol. 79(4), pages 3929-3940, December.
    17. Shi, Jianhua & Ma, Huijuan & Zhou, Yong, 2018. "The nonparametric quantile estimation for length-biased and right-censored data," Statistics & Probability Letters, Elsevier, vol. 134(C), pages 150-158.
    18. Tao Sun & Ying Ding, 2023. "Neural network on interval‐censored data with application to the prediction of Alzheimer's disease," Biometrics, The International Biometric Society, vol. 79(3), pages 2677-2690, September.
    19. Pao-sheng Shen & Yi Liu, 2019. "Pseudo maximum likelihood estimation for the Cox model with doubly truncated data," Statistical Papers, Springer, vol. 60(4), pages 1207-1224, August.
    20. Qingning Zhou & Jianwen Cai & Haibo Zhou, 2018. "Outcome†dependent sampling with interval†censored failure time data," Biometrics, The International Biometric Society, vol. 74(1), pages 58-67, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:77:y:2021:i:4:p:1303-1314. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.