IDEAS home Printed from https://ideas.repec.org/a/bes/jnlasa/v103y2008mjunep737-742.html
   My bibliography  Save this article

Covariate Bias Induced by Length-Biased Sampling of Failure Times

Author

Listed:
  • Bergeron, Pierre-Jerome
  • Asgharian, Masoud
  • Wolfson, David B.

Abstract

No abstract is available for this item.

Suggested Citation

  • Bergeron, Pierre-Jerome & Asgharian, Masoud & Wolfson, David B., 2008. "Covariate Bias Induced by Length-Biased Sampling of Failure Times," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 737-742, June.
  • Handle: RePEc:bes:jnlasa:v:103:y:2008:m:june:p:737-742
    as

    Download full text from publisher

    File URL: http://www.ingentaconnect.com/content/asa/jasa/2008/00000103/00000482/art00031
    File Function: full text
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu Shen & Jing Ning & Jing Qin, 2017. "Nonparametric and semiparametric regression estimation for length-biased survival data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(1), pages 3-24, January.
    2. Kuhn, Peter J. & Shen, Kailing, 2010. "Gender Discrimination in Job Ads: Theory and Evidence," IZA Discussion Papers 5195, Institute of Labor Economics (IZA).
    3. Jin Piao & Jing Ning & Yu Shen, 2019. "Semiparametric model for bivariate survival data subject to biased sampling," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 409-429, April.
    4. Micha Mandel & Ya'akov Ritov, 2010. "The Accelerated Failure Time Model Under Biased Sampling," Biometrics, The International Biometric Society, vol. 66(4), pages 1306-1308, December.
    5. Bentoumi Rachid & Mesfioui Mhamed & Alvo Mayer, 2019. "Dependence measure for length-biased survival data using copulas," Dependence Modeling, De Gruyter, vol. 7(1), pages 348-364, January.
    6. Jieli Ding & Tsui-Shan Lu & Jianwen Cai & Haibo Zhou, 2017. "Recent progresses in outcome-dependent sampling with failure time data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(1), pages 57-82, January.
    7. Jing Ning & Jing Qin & Yu Shen, 2010. "Non‐parametric tests for right‐censored data with biased sampling," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(5), pages 609-630, November.
    8. Yu-Jen Cheng & Mei-Cheng Wang, 2012. "Estimating Propensity Scores and Causal Survival Functions Using Prevalent Survival Data," Biometrics, The International Biometric Society, vol. 68(3), pages 707-716, September.
    9. Jing Qin & Yu Shen, 2010. "Statistical Methods for Analyzing Right-Censored Length-Biased Data under Cox Model," Biometrics, The International Biometric Society, vol. 66(2), pages 382-392, June.
    10. David E. Giles, 2021. "Improved Maximum Likelihood Estimation for the Weibull Distribution Under Length-Biased Sampling," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 59-77, December.
    11. Peter Kuhn & Kailing Shen, 2009. "Employers' Preferences for Gender, Age, Height and Beauty: Direct Evidence," NBER Working Papers 15564, National Bureau of Economic Research, Inc.
    12. Kwun Chuen Gary Chan & Mei-Cheng Wang, 2012. "Estimating Incident Population Distribution from Prevalent Data," Biometrics, The International Biometric Society, vol. 68(2), pages 521-531, June.
    13. Ertefaie Ashkan & Asgharian Masoud & Stephens David A., 2015. "Double Bias: Estimation of Causal Effects from Length-Biased Samples in the Presence of Confounding," The International Journal of Biostatistics, De Gruyter, vol. 11(1), pages 69-89, May.
    14. Shih‐Wei Chen & Chin‐Tsang Chiang, 2018. "General single‐index survival regression models for incident and prevalent covariate data and prevalent data without follow‐up," Biometrics, The International Biometric Society, vol. 74(3), pages 881-890, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlasa:v:103:y:2008:m:june:p:737-742. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.amstat.org/publications/jasa/index.cfm?fuseaction=main .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.