IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v130y2014icp45-63.html
   My bibliography  Save this article

Analyzing right-censored and length-biased data with varying-coefficient transformation model

Author

Listed:
  • Lin, Cunjie
  • Zhou, Yong

Abstract

Right-censored and length-biased data arise in many applications, including disease screening and epidemiological cohort studies. It is challenging to analyze such data, since independent censoring assumption is violated in the presence of biased sampling. In this paper, we study the varying-coefficient transformation models with right-censored and length-biased data. We use the local linear fitting technique and propose estimators of varying coefficients by constructing the local inverse probability weighted estimating equations. We have shown that the proposed estimators are consistent and asymptotically normal and their variances can be estimated consistently. We pay special attention to the case where the censoring variable depends on the covariates. We conduct simulation studies to assess the performance of the proposed method and demonstrate its application on a real data example.

Suggested Citation

  • Lin, Cunjie & Zhou, Yong, 2014. "Analyzing right-censored and length-biased data with varying-coefficient transformation model," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 45-63.
  • Handle: RePEc:eee:jmvana:v:130:y:2014:i:c:p:45-63
    DOI: 10.1016/j.jmva.2014.05.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X14001122
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2014.05.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert J. Gray, 2000. "Estimation of Regression Parameters and the Hazard Function in Transformed Linear Survival Models," Biometrics, The International Biometric Society, vol. 56(2), pages 571-576, June.
    2. Cai, Zongwu & Fan, Jianqing & Yao, Qiwei, 2000. "Functional-coefficient regression models for nonlinear time series," LSE Research Online Documents on Economics 6314, London School of Economics and Political Science, LSE Library.
    3. R.D. Gill, 1980. "Censoring and Stochastic Integrals," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 34(2), pages 124-124, June.
    4. Shen, Yu & Ning, Jing & Qin, Jing, 2009. "Analyzing Length-Biased Data With Semiparametric Transformation and Accelerated Failure Time Models," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1192-1202.
    5. Jing Ning & Jing Qin & Yu Shen, 2011. "Buckley–James-Type Estimator with Right-Censored and Length-Biased Data," Biometrics, The International Biometric Society, vol. 67(4), pages 1369-1378, December.
    6. Cai, Zongwu, 2007. "Trending time-varying coefficient time series models with serially correlated errors," Journal of Econometrics, Elsevier, vol. 136(1), pages 163-188, January.
    7. Jing Qin & Yu Shen, 2010. "Statistical Methods for Analyzing Right-Censored Length-Biased Data under Cox Model," Biometrics, The International Biometric Society, vol. 66(2), pages 382-392, June.
    8. Wolkewitz, Martin & Allignol, Arthur & Schumacher, Martin & Beyersmann, Jan, 2010. "Two Pitfalls in Survival Analyses of Time-Dependent Exposure: A Case Study in a Cohort of Oscar Nominees," The American Statistician, American Statistical Association, vol. 64(3), pages 205-211.
    9. J. Fan & J.‐T. Zhang, 2000. "Two‐step estimation of functional linear models with applications to longitudinal data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(2), pages 303-322.
    10. J. P. Fine, 1999. "Analysing competing risks data with transformation models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(4), pages 817-830.
    11. Pollard, David, 1991. "Asymptotics for Least Absolute Deviation Regression Estimators," Econometric Theory, Cambridge University Press, vol. 7(2), pages 186-199, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Cunjie & Zhou, Yong, 2016. "Semiparametric varying-coefficient model with right-censored and length-biased data," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 119-144.
    2. Yu Shen & Jing Ning & Jing Qin, 2017. "Nonparametric and semiparametric regression estimation for length-biased survival data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(1), pages 3-24, January.
    3. Chengbo Li & Yong Zhou, 2021. "The estimation for the general additive–multiplicative hazard model using the length-biased survival data," Statistical Papers, Springer, vol. 62(1), pages 53-74, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuerong Chen & Yeqian Liu & Jianguo Sun & Yong Zhou, 2016. "Semiparametric Quantile Regression Analysis of Right-censored and Length-biased Failure Time Data with Partially Linear Varying Effects," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(4), pages 921-938, December.
    2. Yu Shen & Jing Ning & Jing Qin, 2017. "Nonparametric and semiparametric regression estimation for length-biased survival data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(1), pages 3-24, January.
    3. Čížek, Pavel & Koo, Chao Hui, 2021. "Jump-preserving varying-coefficient models for nonlinear time series," Econometrics and Statistics, Elsevier, vol. 19(C), pages 58-96.
    4. Xingcai Zhou & Guang Yang & Yu Xiang, 2022. "Quantile-Wavelet Nonparametric Estimates for Time-Varying Coefficient Models," Mathematics, MDPI, vol. 10(13), pages 1-15, July.
    5. Zexi Cai & Tony Sit, 2020. "Censored quantile regression model with time‐varying covariates under length‐biased sampling," Biometrics, The International Biometric Society, vol. 76(4), pages 1201-1215, December.
    6. Jung-Yu Cheng & Shinn-Jia Tzeng, 2014. "Quantile regression of right-censored length-biased data using the Buckley–James-type method," Computational Statistics, Springer, vol. 29(6), pages 1571-1592, December.
    7. Lin, Cunjie & Zhou, Yong, 2014. "Inference for the treatment effects in two sample problems with right-censored and length-biased data," Statistics & Probability Letters, Elsevier, vol. 90(C), pages 17-24.
    8. Zhang, Ting, 2015. "Semiparametric model building for regression models with time-varying parameters," Journal of Econometrics, Elsevier, vol. 187(1), pages 189-200.
    9. Yang, Guangren & Zhou, Yong, 2014. "Semiparametric varying-coefficient study of mean residual life models," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 226-238.
    10. Shangyu Xie & Yong Zhou & Alan T. K. Wan, 2014. "A Varying-Coefficient Expectile Model for Estimating Value at Risk," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(4), pages 576-592, October.
    11. Xie, Shangyu & Wan, Alan T.K. & Zhou, Yong, 2015. "Quantile regression methods with varying-coefficient models for censored data," Computational Statistics & Data Analysis, Elsevier, vol. 88(C), pages 154-172.
    12. Lin, Cunjie & Zhou, Yong, 2016. "Semiparametric varying-coefficient model with right-censored and length-biased data," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 119-144.
    13. Huazhen Lin & Hyokyoung G. Hong & Baoying Yang & Wei Liu & Yong Zhang & Gang-Zhi Fan & Yi Li, 2019. "Nonparametric Time-Varying Coefficient Models for Panel Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(3), pages 548-566, December.
    14. Li Xun & Li Tao & Yong Zhou, 2020. "Estimators of quantile difference between two samples with length-biased and right-censored data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 409-429, June.
    15. Chen, Qitong & Hong, Yongmiao & Li, Haiqi, 2024. "Time-varying forecast combination for factor-augmented regressions with smooth structural changes," Journal of Econometrics, Elsevier, vol. 240(1).
    16. Zhiping Qiu & Jing Qin & Yong Zhou, 2016. "Composite Estimating Equation Method for the Accelerated Failure Time Model with Length-biased Sampling Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 396-415, June.
    17. Chi Hyun Lee & Jing Ning & Yu Shen, 2019. "Model diagnostics for the proportional hazards model with length-biased data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(1), pages 79-96, January.
    18. Wang, Qihua & Zhang, Riquan, 2009. "Statistical estimation in varying coefficient models with surrogate data and validation sampling," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2389-2405, November.
    19. Ma, Huijuan & Zhang, Feipeng & Zhou, Yong, 2015. "Composite estimating equation approach for additive risk model with length-biased and right-censored data," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 45-53.
    20. Heather L. R. Tierney, 2019. "Forecasting with the Nonparametric Exclusion-from-Core Inflation Persistence Model Using Real-Time Data," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 25(1), pages 39-63, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:130:y:2014:i:c:p:45-63. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.