IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v94y1997i3d10.1023_a1022669504795.html
   My bibliography  Save this article

On the Probability of Existence of Pure Equilibria in Matrix Games

Author

Listed:
  • S. Mishra

    (Centre for Development Studies)

  • T. K. Kumar

    (Indian Statistical Institute)

Abstract

In a recent paper (Ref. 1), Papavassilopoulos obtained results on the probability of the existence of pure equilibrium solutions in stochastic matrix games. We report a similar result, but where the payoffs are drawn from a finite set of numbers N. In the limiting case, as N tends to infinity, our result and that of Papavassilopoulos are identical. We also cite similar results obtained independently by others, some of which were already independently brought to the notice of Papavassilopoulos by Li Calzi as reported in Papavassilopoulos (Ref. 2). We cite a much earlier result obtained by Goldman (Ref. 3). We also cite our related work (Ref. 4), in which we derive the conditions for the existence of mixed strategy equilibria in two-person zero-sum games.

Suggested Citation

  • S. Mishra & T. K. Kumar, 1997. "On the Probability of Existence of Pure Equilibria in Matrix Games," Journal of Optimization Theory and Applications, Springer, vol. 94(3), pages 765-770, September.
  • Handle: RePEc:spr:joptap:v:94:y:1997:i:3:d:10.1023_a:1022669504795
    DOI: 10.1023/A:1022669504795
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1022669504795
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1022669504795?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Powers, Imelda Yeung, 1990. "Limiting Distributions of the Number of Pure Strategy Nash Equilibria in N-Person Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 19(3), pages 277-286.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. J. M. Peterson & M. A. Simaan, 2008. "Probabilities of Pure Nash Equilibria in Matrix Games when the Payoff Entries of One Player Are Randomly Selected," Journal of Optimization Theory and Applications, Springer, vol. 137(2), pages 401-410, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tom Johnston & Michael Savery & Alex Scott & Bassel Tarbush, 2023. "Game Connectivity and Adaptive Dynamics," Papers 2309.10609, arXiv.org, revised Oct 2024.
    2. Heinrich, Torsten & Wiese, Samuel, 2020. "The Frequency of Convergent Games under Best-Response Dynamics," INET Oxford Working Papers 2020-24, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
    3. Michael R. Powers & Martin Shubik & Wen Wang, 2016. "Expected Worth for 2 � 2 Matrix Games with Variable Grid Sizes," Cowles Foundation Discussion Papers 2039, Cowles Foundation for Research in Economics, Yale University.
    4. Torsten Heinrich & Yoojin Jang & Luca Mungo & Marco Pangallo & Alex Scott & Bassel Tarbush & Samuel Wiese, 2021. "Best-response dynamics, playing sequences, and convergence to equilibrium in random games," Papers 2101.04222, arXiv.org, revised Nov 2022.
    5. Ben Amiet & Andrea Collevecchio & Marco Scarsini & Ziwen Zhong, 2021. "Pure Nash Equilibria and Best-Response Dynamics in Random Games," Mathematics of Operations Research, INFORMS, vol. 46(4), pages 1552-1572, November.
    6. McLennan, Andrew & Park, In-Uck, 1999. "Generic 4 x 4 Two Person Games Have at Most 15 Nash Equilibria," Games and Economic Behavior, Elsevier, vol. 26(1), pages 111-130, January.
    7. Rinott, Yosef & Scarsini, Marco, 2000. "On the Number of Pure Strategy Nash Equilibria in Random Games," Games and Economic Behavior, Elsevier, vol. 33(2), pages 274-293, November.
    8. Stanford, William, 1999. "On the number of pure strategy Nash equilibria in finite common payoffs games," Economics Letters, Elsevier, vol. 62(1), pages 29-34, January.
    9. Pangallo, Marco & Heinrich, Torsten & Jang, Yoojin & Scott, Alex & Tarbush, Bassel & Wiese, Samuel & Mungo, Luca, 2021. "Best-Response Dynamics, Playing Sequences, And Convergence To Equilibrium In Random Games," INET Oxford Working Papers 2021-23, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
    10. Samuel C. Wiese & Torsten Heinrich, 2022. "The Frequency of Convergent Games under Best-Response Dynamics," Dynamic Games and Applications, Springer, vol. 12(2), pages 689-700, June.
    11. J. M. Peterson & M. A. Simaan, 2008. "Probabilities of Pure Nash Equilibria in Matrix Games when the Payoff Entries of One Player Are Randomly Selected," Journal of Optimization Theory and Applications, Springer, vol. 137(2), pages 401-410, May.
    12. Thomas Quint & Martin Shubik, 1994. "On the Number of Nash Equilibria in a Bimatrix Game," Cowles Foundation Discussion Papers 1089, Cowles Foundation for Research in Economics, Yale University.
    13. Torsten Heinrich & Yoojin Jang & Luca Mungo & Marco Pangallo & Alex Scott & Bassel Tarbush & Samuel Wiese, 2023. "Best-response dynamics, playing sequences, and convergence to equilibrium in random games," International Journal of Game Theory, Springer;Game Theory Society, vol. 52(3), pages 703-735, September.
    14. McLennan, Andrew & Berg, Johannes, 2005. "Asymptotic expected number of Nash equilibria of two-player normal form games," Games and Economic Behavior, Elsevier, vol. 51(2), pages 264-295, May.
    15. Stanford, William, 2004. "Individually rational pure strategies in large games," Games and Economic Behavior, Elsevier, vol. 47(1), pages 221-233, April.
    16. Andrea Collevecchio & Tuan-Minh Nguyen & Ziwen Zhong, 2024. "Finding pure Nash equilibria in large random games," Papers 2406.09732, arXiv.org, revised Aug 2024.
    17. Klaus Kultti & Hannu Salonen & Hannu Vartiainen, 2011. "Distribution of pure Nash equilibria in n-person games with random best replies," Discussion Papers 71, Aboa Centre for Economics.
    18. Stanford, William, 2010. "The number of pure strategy Nash equilibria in random multi-team games," Economics Letters, Elsevier, vol. 108(3), pages 352-354, September.
    19. Ben Amiet & Andrea Collevecchio & Kais Hamza, 2020. "When "Better" is better than "Best"," Papers 2011.00239, arXiv.org.
    20. Noga Alon & Kirill Rudov & Leeat Yariv, 2021. "Dominance Solvability in Random Games," Working Papers 2021-84, Princeton University. Economics Department..

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:94:y:1997:i:3:d:10.1023_a:1022669504795. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.