IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2011.01052.html
   My bibliography  Save this paper

The Frequency of Convergent Games under Best-Response Dynamics

Author

Listed:
  • Samuel C. Wiese
  • Torsten Heinrich

Abstract

Generating payoff matrices of normal-form games at random, we calculate the frequency of games with a unique pure strategy Nash equilibrium in the ensemble of $n$-player, $m$-strategy games. These are perfectly predictable as they must converge to the Nash equilibrium. We then consider a wider class of games that converge under a best-response dynamic, in which each player chooses their optimal pure strategy successively. We show that the frequency of convergent games goes to zero as the number of players or the number of strategies goes to infinity. In the $2$-player case, we show that for large games with at least $10$ strategies, convergent games with multiple pure strategy Nash equilibria are more likely than games with a unique Nash equilibrium. Our novel approach uses an $n$-partite graph to describe games.

Suggested Citation

  • Samuel C. Wiese & Torsten Heinrich, 2020. "The Frequency of Convergent Games under Best-Response Dynamics," Papers 2011.01052, arXiv.org.
  • Handle: RePEc:arx:papers:2011.01052
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2011.01052
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pangallo, Marco & Farmer, J. Doyne & Heinrich, Torsten, "undated". "Best reply structure and equilibrium convergence in generic games," INET Oxford Working Papers 2017-07, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford, revised Mar 2018.
    2. William Stanford, 1996. "The Limit Distribution of Pure Strategy Nash Equilibria in Symmetric Bimatrix Games," Mathematics of Operations Research, INFORMS, vol. 21(3), pages 726-733, August.
    3. Powers, Imelda Yeung, 1990. "Limiting Distributions of the Number of Pure Strategy Nash Equilibria in N-Person Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 19(3), pages 277-286.
    4. Moulin, Herve, 1984. "Dominance solvability and cournot stability," Mathematical Social Sciences, Elsevier, vol. 7(1), pages 83-102, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heinrich, Torsten & Wiese, Samuel, 2020. "The Frequency of Convergent Games under Best-Response Dynamics," INET Oxford Working Papers 2020-24, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
    2. Torsten Heinrich & Yoojin Jang & Luca Mungo & Marco Pangallo & Alex Scott & Bassel Tarbush & Samuel Wiese, 2021. "Best-response dynamics, playing sequences, and convergence to equilibrium in random games," Papers 2101.04222, arXiv.org, revised Nov 2022.
    3. Ben Amiet & Andrea Collevecchio & Marco Scarsini & Ziwen Zhong, 2021. "Pure Nash Equilibria and Best-Response Dynamics in Random Games," Mathematics of Operations Research, INFORMS, vol. 46(4), pages 1552-1572, November.
    4. Pangallo, Marco & Heinrich, Torsten & Jang, Yoojin & Scott, Alex & Tarbush, Bassel & Wiese, Samuel & Mungo, Luca, 2021. "Best-Response Dynamics, Playing Sequences, And Convergence To Equilibrium In Random Games," INET Oxford Working Papers 2021-23, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
    5. Samuel C. Wiese & Torsten Heinrich, 2022. "The Frequency of Convergent Games under Best-Response Dynamics," Dynamic Games and Applications, Springer, vol. 12(2), pages 689-700, June.
    6. Rinott, Yosef & Scarsini, Marco, 2000. "On the Number of Pure Strategy Nash Equilibria in Random Games," Games and Economic Behavior, Elsevier, vol. 33(2), pages 274-293, November.
    7. Stanford, William, 1999. "On the number of pure strategy Nash equilibria in finite common payoffs games," Economics Letters, Elsevier, vol. 62(1), pages 29-34, January.
    8. Torsten Heinrich & Yoojin Jang & Luca Mungo & Marco Pangallo & Alex Scott & Bassel Tarbush & Samuel Wiese, 2023. "Best-response dynamics, playing sequences, and convergence to equilibrium in random games," International Journal of Game Theory, Springer;Game Theory Society, vol. 52(3), pages 703-735, September.
    9. Klaus Kultti & Hannu Salonen & Hannu Vartiainen, 2011. "Distribution of pure Nash equilibria in n-person games with random best replies," Discussion Papers 71, Aboa Centre for Economics.
    10. Takahashi, Satoru, 2008. "The number of pure Nash equilibria in a random game with nondecreasing best responses," Games and Economic Behavior, Elsevier, vol. 63(1), pages 328-340, May.
    11. Tom Johnston & Michael Savery & Alex Scott & Bassel Tarbush, 2023. "Game Connectivity and Adaptive Dynamics," Papers 2309.10609, arXiv.org, revised Oct 2024.
    12. Desgranges, Gabriel & Gauthier, Stéphane, 2016. "Rationalizability and efficiency in an asymmetric Cournot oligopoly," International Journal of Industrial Organization, Elsevier, vol. 44(C), pages 163-176.
    13. Pei, Ting & Takahashi, Satoru, 2019. "Rationalizable strategies in random games," Games and Economic Behavior, Elsevier, vol. 118(C), pages 110-125.
    14. Michael R. Powers & Martin Shubik & Wen Wang, 2016. "Expected Worth for 2 � 2 Matrix Games with Variable Grid Sizes," Cowles Foundation Discussion Papers 2039, Cowles Foundation for Research in Economics, Yale University.
    15. Takuya Iimura & Toshimasa Maruta & Takahiro Watanabe, 2020. "Two-person pairwise solvable games," International Journal of Game Theory, Springer;Game Theory Society, vol. 49(2), pages 385-409, June.
    16. Jara-Moroni, Pedro, 2012. "Rationalizability in games with a continuum of players," Games and Economic Behavior, Elsevier, vol. 75(2), pages 668-684.
    17. Roy, Sunanda & Sabarwal, Tarun, 2012. "Characterizing stability properties in games with strategic substitutes," Games and Economic Behavior, Elsevier, vol. 75(1), pages 337-353.
    18. S. Mishra & T. K. Kumar, 1997. "On the Probability of Existence of Pure Equilibria in Matrix Games," Journal of Optimization Theory and Applications, Springer, vol. 94(3), pages 765-770, September.
    19. Ceparano, Maria Carmela & Quartieri, Federico, 2017. "Nash equilibrium uniqueness in nice games with isotone best replies," Journal of Mathematical Economics, Elsevier, vol. 70(C), pages 154-165.
    20. Hefti, Andreas, 2016. "On the relationship between uniqueness and stability in sum-aggregative, symmetric and general differentiable games," Mathematical Social Sciences, Elsevier, vol. 80(C), pages 83-96.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2011.01052. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.