Generic 4 x 4 Two Person Games Have at Most 15 Nash Equilibria
Author
Abstract
(This abstract was borrowed from another version of this item.)
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.
Other versions of this item:
- McLennan, A & Park, I-U, 1997. "Generic 4 x 4 Two Person Games Have at Most 15 Nash Equilibria," Papers 300, Minnesota - Center for Economic Research.
References listed on IDEAS
- Faruk Gül & David Pearce & Ennio Stacchetti, 1993. "A Bound on the Proportion of Pure Strategy Equilibria in Generic Games," Mathematics of Operations Research, INFORMS, vol. 18(3), pages 548-552, August.
- Keiding, Hans, 1997. "On the Maximal Number of Nash Equilibria in ann x nBimatrix Game," Games and Economic Behavior, Elsevier, vol. 21(1-2), pages 148-160, October.
- McKelvey, Richard D. & McLennan, Andrew, 1997.
"The Maximal Number of Regular Totally Mixed Nash Equilibria,"
Journal of Economic Theory, Elsevier, vol. 72(2), pages 411-425, February.
- McKelvey, Richard D. & McLennan, Andrew, 1994. "The Maximal Number of Regular Totally Mixed Nash Equilibria," Working Papers 865, California Institute of Technology, Division of the Humanities and Social Sciences.
- McKelvey, R.D. & McLennan, A., 1994. "The Maximal Number of Regular Totaly Mixed Nash Equilibria," Papers 272, Minnesota - Center for Economic Research.
- Powers, Imelda Yeung, 1990. "Limiting Distributions of the Number of Pure Strategy Nash Equilibria in N-Person Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 19(3), pages 277-286.
- McLennan, Andrew, 1997.
"The Maximal Generic Number of Pure Nash Equilibria,"
Journal of Economic Theory, Elsevier, vol. 72(2), pages 408-410, February.
- McLennan, A., 1994. "The Maximal Generic Number of Pure Nash Equilibria," Papers 273, Minnesota - Center for Economic Research.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jun Honda, 2018. "Games with the total bandwagon property meet the Quint–Shubik conjecture," International Journal of Game Theory, Springer;Game Theory Society, vol. 47(3), pages 893-912, September.
- Ɖura-Georg Granić & Johannes Kern, 2016. "Circulant games," Theory and Decision, Springer, vol. 80(1), pages 43-69, January.
- Sun, Ching-jen, 2020. "A sandwich theorem for generic n × n two person games," Games and Economic Behavior, Elsevier, vol. 120(C), pages 86-95.
- McLennan, Andrew & Berg, Johannes, 2005. "Asymptotic expected number of Nash equilibria of two-player normal form games," Games and Economic Behavior, Elsevier, vol. 51(2), pages 264-295, May.
- Rahul Savani & Bernhard von Stengel, 2016.
"Unit vector games,"
International Journal of Economic Theory, The International Society for Economic Theory, vol. 12(1), pages 7-27, March.
- von Stengel, Bernhard & Savani, Rahul, 2016. "Unit vector games," LSE Research Online Documents on Economics 65506, London School of Economics and Political Science, LSE Library.
- Ravi Kannan & Thorsten Theobald, 2010. "Games of fixed rank: a hierarchy of bimatrix games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 42(1), pages 157-173, January.
- Philip V. Fellman & Jonathan Vos Post, 2007. "Quantum Nash Equilibria and Quantum Computing," Papers 0707.0324, arXiv.org.
- M. Punniyamoorthy & Sarin Abraham & Jose Joy Thoppan, 2023. "A Method to Select Best Among Multi-Nash Equilibria," Studies in Microeconomics, , vol. 11(1), pages 101-127, April.
- Jun Honda, 2015.
"Games with the Total Bandwagon Property,"
Department of Economics Working Papers
wuwp197, Vienna University of Economics and Business, Department of Economics.
- Honda, Jun, 2015. "Games with the Total Bandwagon Property," Department of Economics Working Paper Series 197, WU Vienna University of Economics and Business.
- Conitzer, Vincent & Sandholm, Tuomas, 2008. "New complexity results about Nash equilibria," Games and Economic Behavior, Elsevier, vol. 63(2), pages 621-641, July.
- Hwang, Sung-Ha & Rey-Bellet, Luc, 2020. "Strategic decompositions of normal form games: Zero-sum games and potential games," Games and Economic Behavior, Elsevier, vol. 122(C), pages 370-390.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sun, Ching-jen, 2020. "A sandwich theorem for generic n × n two person games," Games and Economic Behavior, Elsevier, vol. 120(C), pages 86-95.
- Ɖura-Georg Granić & Johannes Kern, 2016. "Circulant games," Theory and Decision, Springer, vol. 80(1), pages 43-69, January.
- Tom Johnston & Michael Savery & Alex Scott & Bassel Tarbush, 2023. "Game Connectivity and Adaptive Dynamics," Papers 2309.10609, arXiv.org, revised Nov 2023.
- Fabrizio Germano, 2006.
"On some geometry and equivalence classes of normal form games,"
International Journal of Game Theory, Springer;Game Theory Society, vol. 34(4), pages 561-581, November.
- Fabrizio Germano, 2003. "On Some Geometry and Equivalence Classes of Normal Form Games," Working Papers 42, Barcelona School of Economics.
- Fabrizio Germano, 2003. "On some geometry and equivalence classes of normal form games," Economics Working Papers 669, Department of Economics and Business, Universitat Pompeu Fabra.
- McLennan, Andrew, 1997.
"The Maximal Generic Number of Pure Nash Equilibria,"
Journal of Economic Theory, Elsevier, vol. 72(2), pages 408-410, February.
- McLennan, A., 1994. "The Maximal Generic Number of Pure Nash Equilibria," Papers 273, Minnesota - Center for Economic Research.
- McLennan, Andrew & Berg, Johannes, 2005. "Asymptotic expected number of Nash equilibria of two-player normal form games," Games and Economic Behavior, Elsevier, vol. 51(2), pages 264-295, May.
- Eraslan, Hülya & McLennan, Andrew, 2013.
"Uniqueness of stationary equilibrium payoffs in coalitional bargaining,"
Journal of Economic Theory, Elsevier, vol. 148(6), pages 2195-2222.
- Andrew McLennan & H�lya Eraslan, 2010. "Uniqueness of Stationary Equilibrium Payoffs in Coalitional Bargaining," Economics Working Paper Archive 562, The Johns Hopkins University,Department of Economics.
- Arieli, Itai & Babichenko, Yakov, 2016. "Random extensive form games," Journal of Economic Theory, Elsevier, vol. 166(C), pages 517-535.
- Heinrich, Torsten & Wiese, Samuel, 2020. "The Frequency of Convergent Games under Best-Response Dynamics," INET Oxford Working Papers 2020-24, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
- Michael R. Powers & Martin Shubik & Wen Wang, 2016.
"Expected Worth for 2 � 2 Matrix Games with Variable Grid Sizes,"
Cowles Foundation Discussion Papers
2039, Cowles Foundation for Research in Economics, Yale University.
- Michael R. Powers & Martin Shubik & Wen Wang, 2016. "Expected Worth for 2 � 2 Matrix Games with Variable Grid Sizes," Cowles Foundation Discussion Papers 2039R, Cowles Foundation for Research in Economics, Yale University.
- Michael R. Powers & Martin Shubik, 2016. "Expected Worth for 2 � 2 Matrix Games with Variable Grid Sizes," Cowles Foundation Discussion Papers 2053, Cowles Foundation for Research in Economics, Yale University.
- Demichelis, Stefano & Ritzberger, Klaus, 2003.
"From evolutionary to strategic stability,"
Journal of Economic Theory, Elsevier, vol. 113(1), pages 51-75, November.
- DEMICHELIS, Stefano & RITZBERGER, Klaus, 2000. "From evolutionary to strategic stability," LIDAM Discussion Papers CORE 2000059, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- S. Mishra & T. K. Kumar, 1997. "On the Probability of Existence of Pure Equilibria in Matrix Games," Journal of Optimization Theory and Applications, Springer, vol. 94(3), pages 765-770, September.
- Porter, Ryan & Nudelman, Eugene & Shoham, Yoav, 2008. "Simple search methods for finding a Nash equilibrium," Games and Economic Behavior, Elsevier, vol. 63(2), pages 642-662, July.
- DeMichelis, Stefano & Germano, Fabrizio, 2000.
"On the Indices of Zeros of Nash Fields,"
Journal of Economic Theory, Elsevier, vol. 94(2), pages 192-217, October.
- DEMICHELIS, Stefano & GERMANO, Fabrizio, 2000. "On the indices of zeros of Nash fields," LIDAM Reprints CORE 1531, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- DE MICHELIS, Stefano & GERMANO, Fabrizio, 2000. "On the indices of zeros of nash fields," LIDAM Discussion Papers CORE 2000017, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Torsten Heinrich & Yoojin Jang & Luca Mungo & Marco Pangallo & Alex Scott & Bassel Tarbush & Samuel Wiese, 2021.
"Best-response dynamics, playing sequences, and convergence to equilibrium in random games,"
Papers
2101.04222, arXiv.org, revised Nov 2022.
- Pangallo, Marco & Heinrich, Torsten & Jang, Yoojin & Scott, Alex & Tarbush, Bassel & Wiese, Samuel & Mungo, Luca, 2021. "Best-Response Dynamics, Playing Sequences, And Convergence To Equilibrium In Random Games," INET Oxford Working Papers 2021-02, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
- Govindan, Srihari & Laraki, Rida & Pahl, Lucas, 2023.
"On sustainable equilibria,"
Journal of Economic Theory, Elsevier, vol. 213(C).
- Srihari Govindan & Rida Laraki & Lucas Pahl, 2020. "On Sustainable Equilibria," Post-Print hal-03767987, HAL.
- Srihari Govindan & Rida Laraki & Lucas Pahl, 2020. "On Sustainable Equilibria," Post-Print hal-03084834, HAL.
- Srihari Govindan & Rida Laraki & Lucas Pahl, 2020. "On Sustainable Equilibria," Papers 2005.14094, arXiv.org, revised Aug 2021.
- Srihari Govindan & Rida Laraki & Lucas Pahl, 2023. "On sustainable equilibria," Post-Print hal-04305157, HAL.
- Elizabeth Baldwin & Paul Klemperer, 2019.
"Understanding Preferences: “Demand Types”, and the Existence of Equilibrium With Indivisibilities,"
Econometrica, Econometric Society, vol. 87(3), pages 867-932, May.
- Elizabeth Baldwin & Paul Klemperer, 2015. "Understanding Preferences: “Demand Types”, and the Existence of Equilibrium with Indivisibilities," Economics Papers 2015-W10, Economics Group, Nuffield College, University of Oxford.
- Klemperer, Paul & Baldwin, Elizabeth, 2019. "Understanding Preferences: "Demand Types", and the Existence of Equilibrium with Indivisibilities," CEPR Discussion Papers 13586, C.E.P.R. Discussion Papers.
- Baldwin, Elizabeth & Klemperer, Paul, 2016. "Understanding preferences: "demand types", and the existence of equilibrium with indivisibilities," LSE Research Online Documents on Economics 63198, London School of Economics and Political Science, LSE Library.
- Ben Amiet & Andrea Collevecchio & Marco Scarsini & Ziwen Zhong, 2021.
"Pure Nash Equilibria and Best-Response Dynamics in Random Games,"
Mathematics of Operations Research, INFORMS, vol. 46(4), pages 1552-1572, November.
- Ben Amiet & Andrea Collevecchio & Marco Scarsini & Ziwen Zhong, 2019. "Pure Nash Equilibria and Best-Response Dynamics in Random Games," Papers 1905.10758, arXiv.org, revised Jun 2020.
- Balkenborg, Dieter & Vermeulen, Dries, 2014.
"Universality of Nash components,"
Games and Economic Behavior, Elsevier, vol. 86(C), pages 67-76.
- Dieter Balkenborg & Dries Vermeulen, 2012. "Universality of Nash Components," Discussion Papers 1205, University of Exeter, Department of Economics.
- Rinott, Yosef & Scarsini, Marco, 2000.
"On the Number of Pure Strategy Nash Equilibria in Random Games,"
Games and Economic Behavior, Elsevier, vol. 33(2), pages 274-293, November.
- Marco Scarsini & Yosef Rinott, 2000. "On the number of pure strategy Nash equilibria in random games," Post-Print hal-00540207, HAL.
More about this item
JEL classification:
- C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:gamebe:v:26:y:1999:i:1:p:111-130. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622836 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.