Asymptotic expected number of Nash equilibria of two-player normal form games
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Von Stengel, Bernhard, 2002. "Computing equilibria for two-person games," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 3, chapter 45, pages 1723-1759, Elsevier.
- Gilboa, Itzhak & Zemel, Eitan, 1989.
"Nash and correlated equilibria: Some complexity considerations,"
Games and Economic Behavior, Elsevier, vol. 1(1), pages 80-93, March.
- Itzhak Gilboa & Eitan Zemel, 1988. "Nash and Correlated Equilibria: Some Complexity Considerations," Discussion Papers 777, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
- Itzhak Gilboa & Eitan Zemel, 1989. "Nash and Correlated Equilibria: Some Complexity Considerations," Post-Print hal-00753241, HAL.
- Andrew McLennan, 2005.
"The Expected Number of Nash Equilibria of a Normal Form Game,"
Econometrica, Econometric Society, vol. 73(1), pages 141-174, January.
- McLennan, A., 1999. "The Expected Number of Nash Equilibria of a Normal Form Game," Papers 306, Minnesota - Center for Economic Research.
- McKelvey, Richard D. & McLennan, Andrew, 1997.
"The Maximal Number of Regular Totally Mixed Nash Equilibria,"
Journal of Economic Theory, Elsevier, vol. 72(2), pages 411-425, February.
- McKelvey, R.D. & McLennan, A., 1994. "The Maximal Number of Regular Totaly Mixed Nash Equilibria," Papers 272, Minnesota - Center for Economic Research.
- McKelvey, Richard D. & McLennan, Andrew, 1994. "The Maximal Number of Regular Totally Mixed Nash Equilibria," Working Papers 865, California Institute of Technology, Division of the Humanities and Social Sciences.
- McLennan, Andrew & Park, In-Uck, 1999.
"Generic 4 x 4 Two Person Games Have at Most 15 Nash Equilibria,"
Games and Economic Behavior, Elsevier, vol. 26(1), pages 111-130, January.
- McLennan, A & Park, I-U, 1997. "Generic 4 x 4 Two Person Games Have at Most 15 Nash Equilibria," Papers 300, Minnesota - Center for Economic Research.
- Powers, Imelda Yeung, 1990. "Limiting Distributions of the Number of Pure Strategy Nash Equilibria in N-Person Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 19(3), pages 277-286.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Mahajan, Aseem & Pongou, Roland & Tondji, Jean-Baptiste, 2023. "Supermajority politics: Equilibrium range, policy diversity, utilitarian welfare, and political compromise," European Journal of Operational Research, Elsevier, vol. 307(2), pages 963-974.
- Tom Johnston & Michael Savery & Alex Scott & Bassel Tarbush, 2023. "Game Connectivity and Adaptive Dynamics," Papers 2309.10609, arXiv.org, revised Oct 2024.
- Bade, Sophie & Haeringer, Guillaume & Renou, Ludovic, 2007.
"More strategies, more Nash equilibria,"
Journal of Economic Theory, Elsevier, vol. 135(1), pages 551-557, July.
- Sophie Bade & Guillaume Haeringer & Ludovic Renou, 2005. "More Strategies, More Nash Equilibria," School of Economics and Public Policy Working Papers 2005-01, University of Adelaide, School of Economics and Public Policy.
- Sophie Bade & Guillaume Haeringer & Ludovic Renou, 2005. "More strategies, more Nash equilibria," Game Theory and Information 0502001, University Library of Munich, Germany.
- Brandl, Florian, 2017. "The distribution of optimal strategies in symmetric zero-sum games," Games and Economic Behavior, Elsevier, vol. 104(C), pages 674-680.
- Pei, Ting & Takahashi, Satoru, 2019. "Rationalizable strategies in random games," Games and Economic Behavior, Elsevier, vol. 118(C), pages 110-125.
- Conitzer, Vincent & Sandholm, Tuomas, 2008. "New complexity results about Nash equilibria," Games and Economic Behavior, Elsevier, vol. 63(2), pages 621-641, July.
- Carvalho, Margarida & Lodi, Andrea & Pedroso, João.P., 2022. "Computing equilibria for integer programming games," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1057-1070.
- Rahul Savani & Bernhard von Stengel, 2016.
"Unit vector games,"
International Journal of Economic Theory, The International Society for Economic Theory, vol. 12(1), pages 7-27, March.
- von Stengel, Bernhard & Savani, Rahul, 2016. "Unit vector games," LSE Research Online Documents on Economics 65506, London School of Economics and Political Science, LSE Library.
- Manh Hong Duong & The Anh Han, 2016. "On the Expected Number of Equilibria in a Multi-player Multi-strategy Evolutionary Game," Dynamic Games and Applications, Springer, vol. 6(3), pages 324-346, September.
- Klaus Kultti & Hannu Salonen & Hannu Vartiainen, 2011. "Distribution of pure Nash equilibria in n-person games with random best replies," Discussion Papers 71, Aboa Centre for Economics.
- Patrick Bajari & Han Hong & Stephen P. Ryan, 2010.
"Identification and Estimation of a Discrete Game of Complete Information,"
Econometrica, Econometric Society, vol. 78(5), pages 1529-1568, September.
- Patrick Bajari & Han Hong & Stephen Ryan, 2004. "Identification and Estimation of Discrete Games of Complete Information," NBER Technical Working Papers 0301, National Bureau of Economic Research, Inc.
- Stephen Ryan & Patrick Bajari & Han Hong, 2005. "Identification and Estimation of Discrete Games of Complete Information," Computing in Economics and Finance 2005 53, Society for Computational Economics.
- Elizabeth Baldwin & Paul Klemperer, 2019.
"Understanding Preferences: “Demand Types”, and the Existence of Equilibrium With Indivisibilities,"
Econometrica, Econometric Society, vol. 87(3), pages 867-932, May.
- Elizabeth Baldwin & Paul Klemperer, 2015. "Understanding Preferences: “Demand Types”, and the Existence of Equilibrium with Indivisibilities," Economics Papers 2015-W10, Economics Group, Nuffield College, University of Oxford.
- Klemperer, Paul & Baldwin, Elizabeth, 2019. "Understanding Preferences: "Demand Types", and the Existence of Equilibrium with Indivisibilities," CEPR Discussion Papers 13586, C.E.P.R. Discussion Papers.
- Baldwin, Elizabeth & Klemperer, Paul, 2016. "Understanding preferences: "demand types", and the existence of equilibrium with indivisibilities," LSE Research Online Documents on Economics 63198, London School of Economics and Political Science, LSE Library.
- Arieli, Itai & Babichenko, Yakov, 2016. "Random extensive form games," Journal of Economic Theory, Elsevier, vol. 166(C), pages 517-535.
- Lee, Robin S. & Pakes, Ariel, 2009. "Multiple equilibria and selection by learning in an applied setting," Economics Letters, Elsevier, vol. 104(1), pages 13-16, July.
- Porter, Ryan & Nudelman, Eugene & Shoham, Yoav, 2008. "Simple search methods for finding a Nash equilibrium," Games and Economic Behavior, Elsevier, vol. 63(2), pages 642-662, July.
- Torsten Heinrich & Yoojin Jang & Luca Mungo & Marco Pangallo & Alex Scott & Bassel Tarbush & Samuel Wiese, 2023. "Best-response dynamics, playing sequences, and convergence to equilibrium in random games," International Journal of Game Theory, Springer;Game Theory Society, vol. 52(3), pages 703-735, September.
- Martin Bichler & Zhen Hao & Gediminas Adomavicius, 2017. "Coalition-Based Pricing in Ascending Combinatorial Auctions," Information Systems Research, INFORMS, vol. 28(1), pages 159-179, March.
- Torsten Heinrich & Yoojin Jang & Luca Mungo & Marco Pangallo & Alex Scott & Bassel Tarbush & Samuel Wiese, 2021.
"Best-response dynamics, playing sequences, and convergence to equilibrium in random games,"
Papers
2101.04222, arXiv.org, revised Nov 2022.
- Pangallo, Marco & Heinrich, Torsten & Jang, Yoojin & Scott, Alex & Tarbush, Bassel & Wiese, Samuel & Mungo, Luca, 2021. "Best-Response Dynamics, Playing Sequences, And Convergence To Equilibrium In Random Games," INET Oxford Working Papers 2021-02, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
- Pangallo, Marco & Heinrich, Torsten & Jang, Yoojin & Scott, Alex & Tarbush, Bassel & Wiese, Samuel & Mungo, Luca, 2021. "Best-Response Dynamics, Playing Sequences, And Convergence To Equilibrium In Random Games," INET Oxford Working Papers 2021-23, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
- Takahashi, Satoru, 2008. "The number of pure Nash equilibria in a random game with nondecreasing best responses," Games and Economic Behavior, Elsevier, vol. 63(1), pages 328-340, May.
- Samuel C. Wiese & Torsten Heinrich, 2022. "The Frequency of Convergent Games under Best-Response Dynamics," Dynamic Games and Applications, Springer, vol. 12(2), pages 689-700, June.
- David Roberts, 2006. "Nash equilibria of Cauchy-random zero-sum and coordination matrix games," International Journal of Game Theory, Springer;Game Theory Society, vol. 34(2), pages 167-184, August.
- Misha Gavrilovich & Victoriya Kreps, 2015. "On a Class of Optimization Problems with No “Effectively Computable” Solution," HSE Working papers WP BRP 112/EC/2015, National Research University Higher School of Economics.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Conitzer, Vincent & Sandholm, Tuomas, 2008. "New complexity results about Nash equilibria," Games and Economic Behavior, Elsevier, vol. 63(2), pages 621-641, July.
- Porter, Ryan & Nudelman, Eugene & Shoham, Yoav, 2008. "Simple search methods for finding a Nash equilibrium," Games and Economic Behavior, Elsevier, vol. 63(2), pages 642-662, July.
- Rahul Savani & Bernhard von Stengel, 2016.
"Unit vector games,"
International Journal of Economic Theory, The International Society for Economic Theory, vol. 12(1), pages 7-27, March.
- von Stengel, Bernhard & Savani, Rahul, 2016. "Unit vector games," LSE Research Online Documents on Economics 65506, London School of Economics and Political Science, LSE Library.
- Bernhard von Stengel & Antoon van den Elzen & Dolf Talman, 2002.
"Computing Normal Form Perfect Equilibria for Extensive Two-Person Games,"
Econometrica, Econometric Society, vol. 70(2), pages 693-715, March.
- von Stengel, B. & van den Elzen, A.H. & Talman, A.J.J., 1997. "Computing normal form perfect equilibria for extensive two-person games," Other publications TiSEM 4487e2bf-5bc1-47d3-819f-2, Tilburg University, School of Economics and Management.
- von Stengel, B. & van den Elzen, A.H. & Talman, A.J.J., 2002. "Computing normal form perfect equilibria for extensive two-person games," Other publications TiSEM 9f112346-b587-47f3-ad2e-6, Tilburg University, School of Economics and Management.
- von Stengel, B. & van den Elzen, A.H. & Talman, A.J.J., 1997. "Computing normal form perfect equilibria for extensive two-person games," Research Memorandum 752, Tilburg University, School of Economics and Management.
- Fabrizio Germano, 2006.
"On some geometry and equivalence classes of normal form games,"
International Journal of Game Theory, Springer;Game Theory Society, vol. 34(4), pages 561-581, November.
- Fabrizio Germano, 2003. "On Some Geometry and Equivalence Classes of Normal Form Games," Working Papers 42, Barcelona School of Economics.
- Fabrizio Germano, 2003. "On some geometry and equivalence classes of normal form games," Economics Working Papers 669, Department of Economics and Business, Universitat Pompeu Fabra.
- Bade, Sophie & Haeringer, Guillaume & Renou, Ludovic, 2007.
"More strategies, more Nash equilibria,"
Journal of Economic Theory, Elsevier, vol. 135(1), pages 551-557, July.
- Sophie Bade & Guillaume Haeringer & Ludovic Renou, 2005. "More strategies, more Nash equilibria," Game Theory and Information 0502001, University Library of Munich, Germany.
- Sophie Bade & Guillaume Haeringer & Ludovic Renou, 2005. "More Strategies, More Nash Equilibria," School of Economics and Public Policy Working Papers 2005-01, University of Adelaide, School of Economics and Public Policy.
- McLennan, Andrew & Park, In-Uck, 1999.
"Generic 4 x 4 Two Person Games Have at Most 15 Nash Equilibria,"
Games and Economic Behavior, Elsevier, vol. 26(1), pages 111-130, January.
- McLennan, A & Park, I-U, 1997. "Generic 4 x 4 Two Person Games Have at Most 15 Nash Equilibria," Papers 300, Minnesota - Center for Economic Research.
- Elizabeth Baldwin & Paul Klemperer, 2019.
"Understanding Preferences: “Demand Types”, and the Existence of Equilibrium With Indivisibilities,"
Econometrica, Econometric Society, vol. 87(3), pages 867-932, May.
- Elizabeth Baldwin & Paul Klemperer, 2015. "Understanding Preferences: “Demand Types”, and the Existence of Equilibrium with Indivisibilities," Economics Papers 2015-W10, Economics Group, Nuffield College, University of Oxford.
- Klemperer, Paul & Baldwin, Elizabeth, 2019. "Understanding Preferences: "Demand Types", and the Existence of Equilibrium with Indivisibilities," CEPR Discussion Papers 13586, C.E.P.R. Discussion Papers.
- Baldwin, Elizabeth & Klemperer, Paul, 2016. "Understanding preferences: "demand types", and the existence of equilibrium with indivisibilities," LSE Research Online Documents on Economics 63198, London School of Economics and Political Science, LSE Library.
- Bharat Adsul & Jugal Garg & Ruta Mehta & Milind Sohoni & Bernhard von Stengel, 2021. "Fast Algorithms for Rank-1 Bimatrix Games," Operations Research, INFORMS, vol. 69(2), pages 613-631, March.
- P. Herings & Ronald Peeters, 2010.
"Homotopy methods to compute equilibria in game theory,"
Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 42(1), pages 119-156, January.
- Herings, P.J.J. & Peeters, R.J.A.P., 2006. "Homotopy methods to compute equilibria in game theory," Research Memorandum 046, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
- Herings, P. Jean-Jacques & Peeters, Ronald J. A. P., 2004.
"Stationary equilibria in stochastic games: structure, selection, and computation,"
Journal of Economic Theory, Elsevier, vol. 118(1), pages 32-60, September.
- Herings, P.J.J. & Peeters, R.J.A.P., 2000. "Stationary equilibria in stochastic games : structure, selection, and computation," Research Memorandum 031, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
- Etessami, Kousha, 2021. "The complexity of computing a (quasi-)perfect equilibrium for an n-player extensive form game," Games and Economic Behavior, Elsevier, vol. 125(C), pages 107-140.
- Bernhard von Stengel & Françoise Forges, 2008.
"Extensive-Form Correlated Equilibrium: Definition and Computational Complexity,"
Mathematics of Operations Research, INFORMS, vol. 33(4), pages 1002-1022, November.
- Francoise Forges & Bernhard von Stengel, 2008. "Extensive form correlated equilibrium: definition and computational complexity," Post-Print hal-00360729, HAL.
- Arieli, Itai & Babichenko, Yakov, 2016. "Random extensive form games," Journal of Economic Theory, Elsevier, vol. 166(C), pages 517-535.
- Ɖura-Georg Granić & Johannes Kern, 2016. "Circulant games," Theory and Decision, Springer, vol. 80(1), pages 43-69, January.
- F. Forges & B. von Stengel, 2002. "Computionally Efficient Coordination in Games Trees," THEMA Working Papers 2002-05, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
- Tom Johnston & Michael Savery & Alex Scott & Bassel Tarbush, 2023. "Game Connectivity and Adaptive Dynamics," Papers 2309.10609, arXiv.org, revised Oct 2024.
- Torsten Heinrich & Yoojin Jang & Luca Mungo & Marco Pangallo & Alex Scott & Bassel Tarbush & Samuel Wiese, 2021.
"Best-response dynamics, playing sequences, and convergence to equilibrium in random games,"
Papers
2101.04222, arXiv.org, revised Nov 2022.
- Pangallo, Marco & Heinrich, Torsten & Jang, Yoojin & Scott, Alex & Tarbush, Bassel & Wiese, Samuel & Mungo, Luca, 2021. "Best-Response Dynamics, Playing Sequences, And Convergence To Equilibrium In Random Games," INET Oxford Working Papers 2021-02, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
- Pangallo, Marco & Heinrich, Torsten & Jang, Yoojin & Scott, Alex & Tarbush, Bassel & Wiese, Samuel & Mungo, Luca, 2021. "Best-Response Dynamics, Playing Sequences, And Convergence To Equilibrium In Random Games," INET Oxford Working Papers 2021-23, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
- Samuel C. Wiese & Torsten Heinrich, 2022. "The Frequency of Convergent Games under Best-Response Dynamics," Dynamic Games and Applications, Springer, vol. 12(2), pages 689-700, June.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:gamebe:v:51:y:2005:i:2:p:264-295. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622836 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.