IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i5p395-d227388.html
   My bibliography  Save this article

Enhancing Elephant Herding Optimization with Novel Individual Updating Strategies for Large-Scale Optimization Problems

Author

Listed:
  • Jiang Li

    (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China)

  • Lihong Guo

    (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China)

  • Yan Li

    (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China)

  • Chang Liu

    (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China)

Abstract

Inspired by the behavior of elephants in nature, elephant herd optimization (EHO) was proposed recently for global optimization. Like most other metaheuristic algorithms, EHO does not use the previous individuals in the later updating process. If the useful information in the previous individuals were fully exploited and used in the later optimization process, the quality of solutions may be improved significantly. In this paper, we propose several new updating strategies for EHO, in which one, two, or three individuals are selected from the previous iterations, and their useful information is incorporated into the updating process. Accordingly, the final individual at this iteration is generated according to the elephant generated by the basic EHO, and the selected previous elephants through a weighted sum. The weights are determined by a random number and the fitness of the elephant individuals at the previous iteration. We incorporated each of the six individual updating strategies individually into the basic EHO, creating six improved variants of EHO. We benchmarked these proposed methods using sixteen test functions. Our experimental results demonstrated that the proposed improved methods significantly outperformed the basic EHO.

Suggested Citation

  • Jiang Li & Lihong Guo & Yan Li & Chang Liu, 2019. "Enhancing Elephant Herding Optimization with Novel Individual Updating Strategies for Large-Scale Optimization Problems," Mathematics, MDPI, vol. 7(5), pages 1-35, April.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:5:p:395-:d:227388
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/5/395/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/5/395/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zou, Dexuan & Li, Steven & Wang, Gai-Ge & Li, Zongyan & Ouyang, Haibin, 2016. "An improved differential evolution algorithm for the economic load dispatch problems with or without valve-point effects," Applied Energy, Elsevier, vol. 181(C), pages 375-390.
    2. Hong Duan & Wei Zhao & Gaige Wang & Xuehua Feng, 2012. "Test-Sheet Composition Using Analytic Hierarchy Process and Hybrid Metaheuristic Algorithm TS/BBO," Mathematical Problems in Engineering, Hindawi, vol. 2012, pages 1-22, November.
    3. Sun, Xuemei & Zhang, Yiming & Ren, Xu & Chen, Ke, 2015. "Optimization deployment of wireless sensor networks based on culture–ant colony algorithm," Applied Mathematics and Computation, Elsevier, vol. 250(C), pages 58-70.
    4. Gai-Ge Wang & Suash Deb & Xinchao Zhao & Zhihua Cui, 2018. "A new monarch butterfly optimization with an improved crossover operator," Operational Research, Springer, vol. 18(3), pages 731-755, October.
    5. Hong-Yan Sang & Quan-Ke Pan & Pei-Yong Duan & Jun-Qing Li, 2018. "An effective discrete invasive weed optimization algorithm for lot-streaming flowshop scheduling problems," Journal of Intelligent Manufacturing, Springer, vol. 29(6), pages 1337-1349, August.
    6. Yuan, Yanbin & Ji, Bin & Yuan, Xiaohui & Huang, Yuehua, 2015. "Lockage scheduling of Three Gorges-Gezhouba dams by hybrid of chaotic particle swarm optimization and heuristic-adjusted strategies," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 74-89.
    7. Garg, Harish, 2016. "A hybrid PSO-GA algorithm for constrained optimization problems," Applied Mathematics and Computation, Elsevier, vol. 274(C), pages 292-305.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gui Li & Gai-Ge Wang & Shan Wang, 2021. "Two-Population Coevolutionary Algorithm with Dynamic Learning Strategy for Many-Objective Optimization," Mathematics, MDPI, vol. 9(4), pages 1-34, February.
    2. Cheng-Long Wei & Gai-Ge Wang, 2020. "Hybrid Annealing Krill Herd and Quantum-Behaved Particle Swarm Optimization," Mathematics, MDPI, vol. 8(9), pages 1-23, August.
    3. Juan Li & Dan-dan Xiao & Hong Lei & Ting Zhang & Tian Tian, 2020. "Using Cuckoo Search Algorithm with Q -Learning and Genetic Operation to Solve the Problem of Logistics Distribution Center Location," Mathematics, MDPI, vol. 8(2), pages 1-32, January.
    4. Xiaoqi Zhao & Haipeng Qu & Wenjie Lv & Shuo Li & Jianliang Xu, 2021. "MooFuzz: Many-Objective Optimization Seed Schedule for Fuzzer," Mathematics, MDPI, vol. 9(3), pages 1-19, January.
    5. Ghulam Abbas & Irfan Ahmad Khan & Naveed Ashraf & Muhammad Taskeen Raza & Muhammad Rashad & Raheel Muzzammel, 2023. "On Employing a Constrained Nonlinear Optimizer to Constrained Economic Dispatch Problems," Sustainability, MDPI, vol. 15(13), pages 1-23, June.
    6. Morshed, Mohammad Javad & Hmida, Jalel Ben & Fekih, Afef, 2018. "A probabilistic multi-objective approach for power flow optimization in hybrid wind-PV-PEV systems," Applied Energy, Elsevier, vol. 211(C), pages 1136-1149.
    7. Chun-Yao Lee & Maickel Tuegeh, 2020. "An Optimal Solution for Smooth and Non-Smooth Cost Functions-Based Economic Dispatch Problem," Energies, MDPI, vol. 13(14), pages 1-16, July.
    8. Loau Al-Bahrani & Mehdi Seyedmahmoudian & Ben Horan & Alex Stojcevski, 2021. "Solving the Real Power Limitations in the Dynamic Economic Dispatch of Large-Scale Thermal Power Units under the Effects of Valve-Point Loading and Ramp-Rate Limitations," Sustainability, MDPI, vol. 13(3), pages 1-26, January.
    9. Jebaraj, Luke & Venkatesan, Chakkaravarthy & Soubache, Irisappane & Rajan, Charles Christober Asir, 2017. "Application of differential evolution algorithm in static and dynamic economic or emission dispatch problem: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1206-1220.
    10. Kheshti, Mostafa & Ding, Lei & Ma, Shicong & Zhao, Bing, 2018. "Double weighted particle swarm optimization to non-convex wind penetrated emission/economic dispatch and multiple fuel option systems," Renewable Energy, Elsevier, vol. 125(C), pages 1021-1037.
    11. Paramjeet Kaur & Krishna Teerth Chaturvedi & Mohan Lal Kolhe, 2023. "Combined Heat and Power Economic Dispatching within Energy Network using Hybrid Metaheuristic Technique," Energies, MDPI, vol. 16(3), pages 1-17, January.
    12. Adane Abebaw Gessesse & Rajashree Mishra & Mitali Madhumita Acharya & Kedar Nath Das, 2020. "Genetic algorithm based fuzzy programming approach for multi-objective linear fractional stochastic transportation problem involving four-parameter Burr distribution," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(1), pages 93-109, February.
    13. Vikram Kumar Kamboj & Challa Leela Kumari & Sarbjeet Kaur Bath & Deepak Prashar & Mamoon Rashid & Sultan S. Alshamrani & Ahmed Saeed AlGhamdi, 2022. "A Cost-Effective Solution for Non-Convex Economic Load Dispatch Problems in Power Systems Using Slime Mould Algorithm," Sustainability, MDPI, vol. 14(5), pages 1-36, February.
    14. Yassin Belkourchia & Mohamed Zeriab Es-Sadek & Lahcen Azrar, 2023. "New Hybrid Perturbed Projected Gradient and Simulated Annealing Algorithms for Global Optimization," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 438-475, May.
    15. Li, Chaoshun & Wang, Wenxiao & Chen, Deshu, 2019. "Multi-objective complementary scheduling of hydro-thermal-RE power system via a multi-objective hybrid grey wolf optimizer," Energy, Elsevier, vol. 171(C), pages 241-255.
    16. Touqeer Ahmed Jumani & Mohd Wazir Mustafa & Nawaf N. Hamadneh & Samer H. Atawneh & Madihah Md. Rasid & Nayyar Hussain Mirjat & Muhammad Akram Bhayo & Ilyas Khan, 2020. "Computational Intelligence-Based Optimization Methods for Power Quality and Dynamic Response Enhancement of ac Microgrids," Energies, MDPI, vol. 13(16), pages 1-22, August.
    17. Li, Chao & Zhai, Rongrong & Yang, Yongping & Patchigolla, Kumar & Oakey, John E. & Turner, Peter, 2019. "Annual performance analysis and optimization of a solar tower aided coal-fired power plant," Applied Energy, Elsevier, vol. 237(C), pages 440-456.
    18. Brayan A. Atoccsa & David W. Puma & Daygord Mendoza & Estefany Urday & Cristhian Ronceros & Modesto T. Palma, 2024. "Optimization of Ampacity in High-Voltage Underground Cables with Thermal Backfill Using Dynamic PSO and Adaptive Strategies," Energies, MDPI, vol. 17(5), pages 1-19, February.
    19. Luo, Qifang & Yang, Xiao & Zhou, Yongquan, 2019. "Nature-inspired approach: An enhanced moth swarm algorithm for global optimization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 159(C), pages 57-92.
    20. Xiang, Shihu & Yang, Jun, 2023. "A novel adaptive deployment method for the single-target tracking of mobile wireless sensor networks," Reliability Engineering and System Safety, Elsevier, vol. 234(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:5:p:395-:d:227388. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.