IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v193y2022i1d10.1007_s10957-022-02014-1.html
   My bibliography  Save this article

Convergence of Inexact Quasisubgradient Methods with Extrapolation

Author

Listed:
  • Xiaoqi Yang

    (The Hong Kong Polytechnic University)

  • Chenchen Zu

    (The Hong Kong Polytechnic University)

Abstract

In this paper, we investigate an inexact quasisubgradient method with extrapolation for solving a quasiconvex optimization problem with a closed, convex and bounded constraint set. We establish the convergence in objective values, iteration complexity and rate of convergence for our proposed method under Hölder condition and weak sharp minima condition. When both diminishing stepsize and extrapolation stepsize are decaying as a power function, we obtain explicit iteration complexities. When diminishing stepsize is decaying as a power function and the extrapolation stepsize is decreasing not less than a power function, the diminishing stepsize provides a rate of convergence $${\mathcal {O}}\left( \tau ^{k^{s}}\right) (s \in (0,1))$$ O τ k s ( s ∈ ( 0 , 1 ) ) to an optimal solution or to a ball of the optimal solution set, which is faster than $${\mathcal {O}}\left( {1}/{k^\beta }\right) $$ O 1 / k β (for each $$\beta >0$$ β > 0 ). With geometrically decreasing extrapolation stepsize, we obtain a linear rate of convergence to a ball of the optimal solution set for the constant stepsize and dynamic stepsize. Our numerical testing shows that the performance with extrapolation is much more efficient than that without extrapolation in terms of the number of iterations needed for reaching an approximate optimal solution.

Suggested Citation

  • Xiaoqi Yang & Chenchen Zu, 2022. "Convergence of Inexact Quasisubgradient Methods with Extrapolation," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 676-703, June.
  • Handle: RePEc:spr:joptap:v:193:y:2022:i:1:d:10.1007_s10957-022-02014-1
    DOI: 10.1007/s10957-022-02014-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-022-02014-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-022-02014-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boţ, Radu Ioan & Csetnek, Ernö Robert & Hendrich, Christopher, 2015. "Inertial Douglas–Rachford splitting for monotone inclusion problems," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 472-487.
    2. Stephen P. Bradley & Sherwood C. Frey, 1974. "Fractional Programming with Homogeneous Functions," Operations Research, INFORMS, vol. 22(2), pages 350-357, April.
    3. Xiaoqiang Cai & Kok-Lay Teo & Xiaoqi Yang & Xun Yu Zhou, 2000. "Portfolio Optimization Under a Minimax Rule," Management Science, INFORMS, vol. 46(7), pages 957-972, July.
    4. Yaohua Hu & Jiawen Li & Carisa Kwok Wai Yu, 2020. "Convergence rates of subgradient methods for quasi-convex optimization problems," Computational Optimization and Applications, Springer, vol. 77(1), pages 183-212, September.
    5. X. X. Huang & X. Q. Yang, 2003. "A Unified Augmented Lagrangian Approach to Duality and Exact Penalization," Mathematics of Operations Research, INFORMS, vol. 28(3), pages 533-552, August.
    6. Nils Langenberg & Rainer Tichatschke, 2012. "Interior proximal methods for quasiconvex optimization," Journal of Global Optimization, Springer, vol. 52(3), pages 641-661, March.
    7. Patrick R. Johnstone & Pierre Moulin, 2017. "Local and global convergence of a general inertial proximal splitting scheme for minimizing composite functions," Computational Optimization and Applications, Springer, vol. 67(2), pages 259-292, June.
    8. NESTEROV, Yu., 2005. "Smooth minimization of non-smooth functions," LIDAM Reprints CORE 1819, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    9. Zhongming Wu & Min Li, 2019. "General inertial proximal gradient method for a class of nonconvex nonsmooth optimization problems," Computational Optimization and Applications, Springer, vol. 73(1), pages 129-158, May.
    10. M. Marques Alves & Jonathan Eckstein & Marina Geremia & Jefferson G. Melo, 2020. "Relative-error inertial-relaxed inexact versions of Douglas-Rachford and ADMM splitting algorithms," Computational Optimization and Applications, Springer, vol. 75(2), pages 389-422, March.
    11. A. Auslender & M. Teboulle, 2004. "Interior Gradient and Epsilon-Subgradient Descent Methods for Constrained Convex Minimization," Mathematics of Operations Research, INFORMS, vol. 29(1), pages 1-26, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Szilárd Csaba László, 2023. "A Forward–Backward Algorithm With Different Inertial Terms for Structured Non-Convex Minimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 198(1), pages 387-427, July.
    2. Hu, Yaohua & Li, Gongnong & Yu, Carisa Kwok Wai & Yip, Tsz Leung, 2022. "Quasi-convex feasibility problems: Subgradient methods and convergence rates," European Journal of Operational Research, Elsevier, vol. 298(1), pages 45-58.
    3. Regina S. Burachik & Yaohua Hu & Xiaoqi Yang, 2022. "Interior quasi-subgradient method with non-Euclidean distances for constrained quasi-convex optimization problems in hilbert spaces," Journal of Global Optimization, Springer, vol. 83(2), pages 249-271, June.
    4. Yaohua Hu & Carisa Kwok Wai Yu & Xiaoqi Yang, 2019. "Incremental quasi-subgradient methods for minimizing the sum of quasi-convex functions," Journal of Global Optimization, Springer, vol. 75(4), pages 1003-1028, December.
    5. Zhongming Wu & Min Li, 2019. "General inertial proximal gradient method for a class of nonconvex nonsmooth optimization problems," Computational Optimization and Applications, Springer, vol. 73(1), pages 129-158, May.
    6. E. M. Bednarczuk & A. Jezierska & K. E. Rutkowski, 2018. "Proximal primal–dual best approximation algorithm with memory," Computational Optimization and Applications, Springer, vol. 71(3), pages 767-794, December.
    7. Hu, Yaohua & Yang, Xiaoqi & Sim, Chee-Khian, 2015. "Inexact subgradient methods for quasi-convex optimization problems," European Journal of Operational Research, Elsevier, vol. 240(2), pages 315-327.
    8. Zhongming Wu & Chongshou Li & Min Li & Andrew Lim, 2021. "Inertial proximal gradient methods with Bregman regularization for a class of nonconvex optimization problems," Journal of Global Optimization, Springer, vol. 79(3), pages 617-644, March.
    9. Jamilu Abubakar & Poom Kumam & Abdulkarim Hassan Ibrahim & Anantachai Padcharoen, 2020. "Relaxed Inertial Tseng’s Type Method for Solving the Inclusion Problem with Application to Image Restoration," Mathematics, MDPI, vol. 8(5), pages 1-19, May.
    10. Xiaoqi Yang & Zhangyou Chen & Jinchuan Zhou, 2016. "Optimality Conditions for Semi-Infinite and Generalized Semi-Infinite Programs Via Lower Order Exact Penalty Functions," Journal of Optimization Theory and Applications, Springer, vol. 169(3), pages 984-1012, June.
    11. Mauricio Romero Sicre, 2020. "On the complexity of a hybrid proximal extragradient projective method for solving monotone inclusion problems," Computational Optimization and Applications, Springer, vol. 76(3), pages 991-1019, July.
    12. X. X. Huang & X. Q. Yang & K. L. Teo, 2007. "Lower-Order Penalization Approach to Nonlinear Semidefinite Programming," Journal of Optimization Theory and Applications, Springer, vol. 132(1), pages 1-20, January.
    13. Sorin-Mihai Grad & Felipe Lara, 2022. "An extension of the proximal point algorithm beyond convexity," Journal of Global Optimization, Springer, vol. 82(2), pages 313-329, February.
    14. Pawicha Phairatchatniyom & Poom Kumam & Yeol Je Cho & Wachirapong Jirakitpuwapat & Kanokwan Sitthithakerngkiet, 2019. "The Modified Inertial Iterative Algorithm for Solving Split Variational Inclusion Problem for Multi-Valued Quasi Nonexpansive Mappings with Some Applications," Mathematics, MDPI, vol. 7(6), pages 1-22, June.
    15. Chinedu Izuchukwu & Yekini Shehu, 2021. "New Inertial Projection Methods for Solving Multivalued Variational Inequality Problems Beyond Monotonicity," Networks and Spatial Economics, Springer, vol. 21(2), pages 291-323, June.
    16. J. Zhai & X. X. Huang, 2014. "Calmness and Exact Penalization in Vector Optimization under Nonlinear Perturbations," Journal of Optimization Theory and Applications, Springer, vol. 162(3), pages 856-872, September.
    17. Huang, Xiaoxia, 2007. "Two new models for portfolio selection with stochastic returns taking fuzzy information," European Journal of Operational Research, Elsevier, vol. 180(1), pages 396-405, July.
    18. Dirk Lorenz & Marc Pfetsch & Andreas Tillmann, 2014. "An infeasible-point subgradient method using adaptive approximate projections," Computational Optimization and Applications, Springer, vol. 57(2), pages 271-306, March.
    19. W. Hare & J. Nutini, 2013. "A derivative-free approximate gradient sampling algorithm for finite minimax problems," Computational Optimization and Applications, Springer, vol. 56(1), pages 1-38, September.
    20. Bo Li & Yufei Sun & Kok Lay Teo, 2022. "An analytic solution for multi-period uncertain portfolio selection problem," Fuzzy Optimization and Decision Making, Springer, vol. 21(2), pages 319-333, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:193:y:2022:i:1:d:10.1007_s10957-022-02014-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.