IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v71y2018i3d10.1007_s10589-018-0031-1.html
   My bibliography  Save this article

Proximal primal–dual best approximation algorithm with memory

Author

Listed:
  • E. M. Bednarczuk

    (Polish Academy of Sciences
    Warsaw University of Technology)

  • A. Jezierska

    (Polish Academy of Sciences
    Gdansk University of Technology)

  • K. E. Rutkowski

    (Warsaw University of Technology)

Abstract

We propose a new modified primal–dual proximal best approximation method for solving convex not necessarily differentiable optimization problems. The novelty of the method relies on introducing memory by taking into account iterates computed in previous steps in the formulas defining current iterate. To this end we consider projections onto intersections of halfspaces generated on the basis of the current as well as the previous iterates. To calculate these projections we are using recently obtained closed-form expressions for projectors onto polyhedral sets. The resulting algorithm with memory inherits strong convergence properties of the original best approximation proximal primal–dual algorithm. Additionally, we compare our algorithm with the original (non-inertial) one with the help of the so called attraction property defined below. Extensive numerical experimental results on image reconstruction problems illustrate the advantages of including memory into the original algorithm.

Suggested Citation

  • E. M. Bednarczuk & A. Jezierska & K. E. Rutkowski, 2018. "Proximal primal–dual best approximation algorithm with memory," Computational Optimization and Applications, Springer, vol. 71(3), pages 767-794, December.
  • Handle: RePEc:spr:coopap:v:71:y:2018:i:3:d:10.1007_s10589-018-0031-1
    DOI: 10.1007/s10589-018-0031-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-018-0031-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-018-0031-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Radu Boţ & Christopher Hendrich, 2013. "A double smoothing technique for solving unconstrained nondifferentiable convex optimization problems," Computational Optimization and Applications, Springer, vol. 54(2), pages 239-262, March.
    2. Niao He & Anatoli Juditsky & Arkadi Nemirovski, 2015. "Mirror Prox algorithm for multi-term composite minimization and semi-separable problems," Computational Optimization and Applications, Springer, vol. 61(2), pages 275-319, June.
    3. Jueyou Li & Guo Chen & Zhaoyang Dong & Zhiyou Wu, 2016. "A fast dual proximal-gradient method for separable convex optimization with linear coupled constraints," Computational Optimization and Applications, Springer, vol. 64(3), pages 671-697, July.
    4. Jonathan Eckstein, 2017. "A Simplified Form of Block-Iterative Operator Splitting and an Asynchronous Algorithm Resembling the Multi-Block Alternating Direction Method of Multipliers," Journal of Optimization Theory and Applications, Springer, vol. 173(1), pages 155-182, April.
    5. Boţ, Radu Ioan & Csetnek, Ernö Robert & Hendrich, Christopher, 2015. "Inertial Douglas–Rachford splitting for monotone inclusion problems," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 472-487.
    6. Emilie Chouzenoux & Jean-Christophe Pesquet & Audrey Repetti, 2016. "A block coordinate variable metric forward–backward algorithm," Journal of Global Optimization, Springer, vol. 66(3), pages 457-485, November.
    7. Patrick R. Johnstone & Pierre Moulin, 2017. "Local and global convergence of a general inertial proximal splitting scheme for minimizing composite functions," Computational Optimization and Applications, Springer, vol. 67(2), pages 259-292, June.
    8. Y. J. Wang & N. H. Xiu & J. Z. Zhang, 2003. "Modified Extragradient Method for Variational Inequalities and Verification of Solution Existence," Journal of Optimization Theory and Applications, Springer, vol. 119(1), pages 167-183, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luis M. Briceño-Arias & Fernando Roldán, 2022. "Four-Operator Splitting via a Forward–Backward–Half-Forward Algorithm with Line Search," Journal of Optimization Theory and Applications, Springer, vol. 195(1), pages 205-225, October.
    2. Zhongming Wu & Min Li, 2019. "General inertial proximal gradient method for a class of nonconvex nonsmooth optimization problems," Computational Optimization and Applications, Springer, vol. 73(1), pages 129-158, May.
    3. Xiaoqi Yang & Chenchen Zu, 2022. "Convergence of Inexact Quasisubgradient Methods with Extrapolation," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 676-703, June.
    4. Szilárd Csaba László, 2023. "A Forward–Backward Algorithm With Different Inertial Terms for Structured Non-Convex Minimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 198(1), pages 387-427, July.
    5. Weiyang Ding & Michael K. Ng & Wenxing Zhang, 2024. "A generalized alternating direction implicit method for consensus optimization: application to distributed sparse logistic regression," Journal of Global Optimization, Springer, vol. 90(3), pages 727-753, November.
    6. Le Thi Khanh Hien & Duy Nhat Phan & Nicolas Gillis, 2022. "Inertial alternating direction method of multipliers for non-convex non-smooth optimization," Computational Optimization and Applications, Springer, vol. 83(1), pages 247-285, September.
    7. Pawicha Phairatchatniyom & Poom Kumam & Yeol Je Cho & Wachirapong Jirakitpuwapat & Kanokwan Sitthithakerngkiet, 2019. "The Modified Inertial Iterative Algorithm for Solving Split Variational Inclusion Problem for Multi-Valued Quasi Nonexpansive Mappings with Some Applications," Mathematics, MDPI, vol. 7(6), pages 1-22, June.
    8. Chinedu Izuchukwu & Yekini Shehu, 2021. "New Inertial Projection Methods for Solving Multivalued Variational Inequality Problems Beyond Monotonicity," Networks and Spatial Economics, Springer, vol. 21(2), pages 291-323, June.
    9. Q. L. Dong & J. Z. Huang & X. H. Li & Y. J. Cho & Th. M. Rassias, 2019. "MiKM: multi-step inertial Krasnosel’skiǐ–Mann algorithm and its applications," Journal of Global Optimization, Springer, vol. 73(4), pages 801-824, April.
    10. P. Anh & H. Le Thi, 2013. "An Armijo-type method for pseudomonotone equilibrium problems and its applications," Journal of Global Optimization, Springer, vol. 57(3), pages 803-820, November.
    11. Trinh Ngoc Hai, 2020. "Two modified extragradient algorithms for solving variational inequalities," Journal of Global Optimization, Springer, vol. 78(1), pages 91-106, September.
    12. Seifu Endris Yimer & Poom Kumam & Anteneh Getachew Gebrie & Rabian Wangkeeree, 2019. "Inertial Method for Bilevel Variational Inequality Problems with Fixed Point and Minimizer Point Constraints," Mathematics, MDPI, vol. 7(9), pages 1-21, September.
    13. Chuanwei Wang & Yiju Wang & Chuanliang Xu, 2007. "A projection method for a system of nonlinear monotone equations with convex constraints," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 66(1), pages 33-46, August.
    14. Erfan Yazdandoost Hamedani & Afrooz Jalilzadeh, 2023. "A stochastic variance-reduced accelerated primal-dual method for finite-sum saddle-point problems," Computational Optimization and Applications, Springer, vol. 85(2), pages 653-679, June.
    15. Gert Wanka & Oleg Wilfer, 2017. "A Lagrange duality approach for multi-composed optimization problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 288-313, July.
    16. Dongying Wang & Xianfu Wang, 2019. "A parameterized Douglas–Rachford algorithm," Computational Optimization and Applications, Springer, vol. 73(3), pages 839-869, July.
    17. Guo-ji Tang & Nan-jing Huang, 2012. "Korpelevich’s method for variational inequality problems on Hadamard manifolds," Journal of Global Optimization, Springer, vol. 54(3), pages 493-509, November.
    18. Chanjuan Pan & Yuanheng Wang, 2019. "Convergence Theorems for Modified Inertial Viscosity Splitting Methods in Banach Spaces," Mathematics, MDPI, vol. 7(2), pages 1-12, February.
    19. Hedy Attouch & Zaki Chbani & Jalal Fadili & Hassan Riahi, 2022. "Fast Convergence of Dynamical ADMM via Time Scaling of Damped Inertial Dynamics," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 704-736, June.
    20. Pooja Gupta & Angshul Majumdar & Emilie Chouzenoux & Giovanni Chierchia, 2020. "SuperDeConFuse: A Supervised Deep Convolutional Transform based Fusion Framework for Financial Trading Systems," Papers 2011.04364, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:71:y:2018:i:3:d:10.1007_s10589-018-0031-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.