IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v77y2020i1d10.1007_s10589-020-00194-y.html
   My bibliography  Save this article

Convergence rates of subgradient methods for quasi-convex optimization problems

Author

Listed:
  • Yaohua Hu

    (Shenzhen University)

  • Jiawen Li

    (Shenzhen University)

  • Carisa Kwok Wai Yu

    (The Hang Seng University of Hong Kong)

Abstract

Quasi-convex optimization acts a pivotal part in many fields including economics and finance; the subgradient method is an effective iterative algorithm for solving large-scale quasi-convex optimization problems. In this paper, we investigate the quantitative convergence theory, including the iteration complexity and convergence rates, of various subgradient methods for solving quasi-convex optimization problems in a unified framework. In particular, we consider a sequence satisfying a general (inexact) basic inequality, and investigate the global convergence theorem and the iteration complexity when using the constant, diminishing or dynamic stepsize rules. More importantly, we establish the linear (or sublinear) convergence rates of the sequence under an additional assumption of weak sharp minima of Hölderian order and upper bounded noise. These convergence theorems are applied to establish the iteration complexity and convergence rates of several subgradient methods, including the standard/inexact/conditional subgradient methods, for solving quasi-convex optimization problems under the assumptions of the Hölder condition and/or the weak sharp minima of Hölderian order.

Suggested Citation

  • Yaohua Hu & Jiawen Li & Carisa Kwok Wai Yu, 2020. "Convergence rates of subgradient methods for quasi-convex optimization problems," Computational Optimization and Applications, Springer, vol. 77(1), pages 183-212, September.
  • Handle: RePEc:spr:coopap:v:77:y:2020:i:1:d:10.1007_s10589-020-00194-y
    DOI: 10.1007/s10589-020-00194-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-020-00194-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-020-00194-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhaosong Lu & Yong Zhang & Jian Lu, 2017. "$$\ell _p$$ ℓ p Regularized low-rank approximation via iterative reweighted singular value minimization," Computational Optimization and Applications, Springer, vol. 68(3), pages 619-642, December.
    2. Erik Alex Papa Quiroz & Hellena Christina Fernandes Apolinário & Kely Diana Villacorta & Paulo Roberto Oliveira, 2019. "A Linear Scalarization Proximal Point Method for Quasiconvex Multiobjective Minimization," Journal of Optimization Theory and Applications, Springer, vol. 183(3), pages 1028-1052, December.
    3. X. X. Huang & X. Q. Yang, 2003. "A Unified Augmented Lagrangian Approach to Duality and Exact Penalization," Mathematics of Operations Research, INFORMS, vol. 28(3), pages 533-552, August.
    4. A. Nedić & A. Ozdaglar, 2009. "Subgradient Methods for Saddle-Point Problems," Journal of Optimization Theory and Applications, Springer, vol. 142(1), pages 205-228, July.
    5. Papa Quiroz, E.A. & Mallma Ramirez, L. & Oliveira, P.R., 2015. "An inexact proximal method for quasiconvex minimization," European Journal of Operational Research, Elsevier, vol. 246(3), pages 721-729.
    6. Nesterov, Yu. & Shikhman, V., 2018. "Dual subgradient method with averaging for optimal resource allocation," European Journal of Operational Research, Elsevier, vol. 270(3), pages 907-916.
    7. Yurii Nesterov & Vladimir Shikhman, 2018. "Dual subgradient method with averaging for optimal resource allocation," LIDAM Reprints CORE 2973, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. Larsson, Torbjorn & Patriksson, Michael & Stromberg, Ann-Brith, 1996. "Conditional subgradient optimization -- Theory and applications," European Journal of Operational Research, Elsevier, vol. 88(2), pages 382-403, January.
    9. H. Apolinário & E. Papa Quiroz & P. Oliveira, 2016. "A scalarization proximal point method for quasiconvex multiobjective minimization," Journal of Global Optimization, Springer, vol. 64(1), pages 79-96, January.
    10. Papa Quiroz, E.A. & Roberto Oliveira, P., 2012. "An extension of proximal methods for quasiconvex minimization on the nonnegative orthant," European Journal of Operational Research, Elsevier, vol. 216(1), pages 26-32.
    11. Jifeng Bao & Carisa Kwok Wai Yu & Jinhua Wang & Yaohua Hu & Jen-Chih Yao, 2019. "Modified inexact Levenberg–Marquardt methods for solving nonlinear least squares problems," Computational Optimization and Applications, Springer, vol. 74(2), pages 547-582, November.
    12. Hu, Yaohua & Yang, Xiaoqi & Sim, Chee-Khian, 2015. "Inexact subgradient methods for quasi-convex optimization problems," European Journal of Operational Research, Elsevier, vol. 240(2), pages 315-327.
    13. Marguerite Frank & Philip Wolfe, 1956. "An algorithm for quadratic programming," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 3(1‐2), pages 95-110, March.
    14. Elisa Mastrogiacomo & Emanuela Rosazza Gianin, 2015. "Portfolio Optimization with Quasiconvex Risk Measures," Mathematics of Operations Research, INFORMS, vol. 40(4), pages 1042-1059, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Yaohua & Li, Gongnong & Yu, Carisa Kwok Wai & Yip, Tsz Leung, 2022. "Quasi-convex feasibility problems: Subgradient methods and convergence rates," European Journal of Operational Research, Elsevier, vol. 298(1), pages 45-58.
    2. Regina S. Burachik & Yaohua Hu & Xiaoqi Yang, 2022. "Interior quasi-subgradient method with non-Euclidean distances for constrained quasi-convex optimization problems in hilbert spaces," Journal of Global Optimization, Springer, vol. 83(2), pages 249-271, June.
    3. Xiaoqi Yang & Chenchen Zu, 2022. "Convergence of Inexact Quasisubgradient Methods with Extrapolation," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 676-703, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Yaohua & Li, Gongnong & Yu, Carisa Kwok Wai & Yip, Tsz Leung, 2022. "Quasi-convex feasibility problems: Subgradient methods and convergence rates," European Journal of Operational Research, Elsevier, vol. 298(1), pages 45-58.
    2. Regina S. Burachik & Yaohua Hu & Xiaoqi Yang, 2022. "Interior quasi-subgradient method with non-Euclidean distances for constrained quasi-convex optimization problems in hilbert spaces," Journal of Global Optimization, Springer, vol. 83(2), pages 249-271, June.
    3. Yaohua Hu & Carisa Kwok Wai Yu & Xiaoqi Yang, 2019. "Incremental quasi-subgradient methods for minimizing the sum of quasi-convex functions," Journal of Global Optimization, Springer, vol. 75(4), pages 1003-1028, December.
    4. E. A. Papa Quiroz & S. Cruzado, 2022. "An inexact scalarization proximal point method for multiobjective quasiconvex minimization," Annals of Operations Research, Springer, vol. 316(2), pages 1445-1470, September.
    5. Haitian Liu & Subhonmesh Bose & Hoa Dinh Nguyen & Ye Guo & Thinh T. Doan & Carolyn L. Beck, 2024. "Distributed Dual Subgradient Methods with Averaging and Applications to Grid Optimization," Journal of Optimization Theory and Applications, Springer, vol. 203(2), pages 1991-2024, November.
    6. Erik Alex Papa Quiroz & Hellena Christina Fernandes Apolinário & Kely Diana Villacorta & Paulo Roberto Oliveira, 2019. "A Linear Scalarization Proximal Point Method for Quasiconvex Multiobjective Minimization," Journal of Optimization Theory and Applications, Springer, vol. 183(3), pages 1028-1052, December.
    7. Vitaly G. Il’ichev & Dmitry B. Rokhlin, 2022. "Internal Prices and Optimal Exploitation of Natural Resources," Mathematics, MDPI, vol. 10(11), pages 1-14, May.
    8. Xiaopeng Zhao & Jen-Chih Yao, 2022. "Linear convergence of a nonmonotone projected gradient method for multiobjective optimization," Journal of Global Optimization, Springer, vol. 82(3), pages 577-594, March.
    9. Yaohua Hu & Chong Li & Kaiwen Meng & Xiaoqi Yang, 2021. "Linear convergence of inexact descent method and inexact proximal gradient algorithms for lower-order regularization problems," Journal of Global Optimization, Springer, vol. 79(4), pages 853-883, April.
    10. H. Apolinário & E. Papa Quiroz & P. Oliveira, 2016. "A scalarization proximal point method for quasiconvex multiobjective minimization," Journal of Global Optimization, Springer, vol. 64(1), pages 79-96, January.
    11. Andreas Fischer & Alexey F. Izmailov & Mikhail V. Solodov, 2024. "The Levenberg–Marquardt method: an overview of modern convergence theories and more," Computational Optimization and Applications, Springer, vol. 89(1), pages 33-67, September.
    12. Regina S. Burachik & Alfredo N. Iusem & Jefferson G. Melo, 2013. "An Inexact Modified Subgradient Algorithm for Primal-Dual Problems via Augmented Lagrangians," Journal of Optimization Theory and Applications, Springer, vol. 157(1), pages 108-131, April.
    13. Hishinuma, Kazuhiro & Iiduka, Hideaki, 2020. "Fixed point quasiconvex subgradient method," European Journal of Operational Research, Elsevier, vol. 282(2), pages 428-437.
    14. F. Lara, 2022. "On Strongly Quasiconvex Functions: Existence Results and Proximal Point Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 192(3), pages 891-911, March.
    15. Xiaoqi Yang & Zhangyou Chen & Jinchuan Zhou, 2016. "Optimality Conditions for Semi-Infinite and Generalized Semi-Infinite Programs Via Lower Order Exact Penalty Functions," Journal of Optimization Theory and Applications, Springer, vol. 169(3), pages 984-1012, June.
    16. Guillaume Sagnol & Edouard Pauwels, 2019. "An unexpected connection between Bayes A-optimal designs and the group lasso," Statistical Papers, Springer, vol. 60(2), pages 565-584, April.
    17. Shinji Yamada & Akiko Takeda, 2018. "Successive Lagrangian relaxation algorithm for nonconvex quadratic optimization," Journal of Global Optimization, Springer, vol. 71(2), pages 313-339, June.
    18. Maingé, Paul-Emile, 2014. "A viscosity method with no spectral radius requirements for the split common fixed point problem," European Journal of Operational Research, Elsevier, vol. 235(1), pages 17-27.
    19. Abdelfettah Laouzai & Rachid Ouafi, 2022. "A prediction model for atmospheric pollution reduction from urban traffic," Environment and Planning B, , vol. 49(2), pages 566-584, February.
    20. X. X. Huang & X. Q. Yang & K. L. Teo, 2007. "Lower-Order Penalization Approach to Nonlinear Semidefinite Programming," Journal of Optimization Theory and Applications, Springer, vol. 132(1), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:77:y:2020:i:1:d:10.1007_s10589-020-00194-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.