IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v76y2020i3d10.1007_s10589-020-00200-3.html
   My bibliography  Save this article

On the complexity of a hybrid proximal extragradient projective method for solving monotone inclusion problems

Author

Listed:
  • Mauricio Romero Sicre

    (Universidade Federal da Bahia)

Abstract

In a series of papers (Solodov and Svaiter in J Convex Anal 6(1):59–70, 1999; Set-Valued Anal 7(4):323–345, 1999; Numer Funct Anal Optim 22(7–8):1013–1035, 2001) Solodov and Svaiter introduced new inexact variants of the proximal point method with relative error tolerances. Point-wise and ergodic iteration-complexity bounds for one of these methods, namely the hybrid proximal extragradient method (1999) were established by Monteiro and Svaiter (SIAM J Optim 20(6):2755–2787, 2010). Here, we extend these results to a more general framework, by establishing point-wise and ergodic iteration-complexity bounds for the inexact proximal point method studied by Solodov and Svaiter (2001). Using this framework we derive global convergence results and iteration-complexity bounds for a family of projective splitting methods for solving monotone inclusion problems, which generalize the projective splitting methods introduced and studied by Eckstein and Svaiter (SIAM J Control Optim 48(2):787–811, 2009).

Suggested Citation

  • Mauricio Romero Sicre, 2020. "On the complexity of a hybrid proximal extragradient projective method for solving monotone inclusion problems," Computational Optimization and Applications, Springer, vol. 76(3), pages 991-1019, July.
  • Handle: RePEc:spr:coopap:v:76:y:2020:i:3:d:10.1007_s10589-020-00200-3
    DOI: 10.1007/s10589-020-00200-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-020-00200-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-020-00200-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. T. Rockafellar, 1976. "Augmented Lagrangians and Applications of the Proximal Point Algorithm in Convex Programming," Mathematics of Operations Research, INFORMS, vol. 1(2), pages 97-116, May.
    2. Majela Pentón Machado, 2018. "On the Complexity of the Projective Splitting and Spingarn’s Methods for the Sum of Two Maximal Monotone Operators," Journal of Optimization Theory and Applications, Springer, vol. 178(1), pages 153-190, July.
    3. L. C. Ceng & B. S. Mordukhovich & J. C. Yao, 2010. "Hybrid Approximate Proximal Method with Auxiliary Variational Inequality for Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 146(2), pages 267-303, August.
    4. M. Marques Alves & Jonathan Eckstein & Marina Geremia & Jefferson G. Melo, 2020. "Relative-error inertial-relaxed inexact versions of Douglas-Rachford and ADMM splitting algorithms," Computational Optimization and Applications, Springer, vol. 75(2), pages 389-422, March.
    5. Renato D. C. Monteiro & Chee-Khian Sim, 2018. "Complexity of the relaxed Peaceman–Rachford splitting method for the sum of two maximal strongly monotone operators," Computational Optimization and Applications, Springer, vol. 70(3), pages 763-790, July.
    6. Majela Pentón Machado, 2019. "Projective method of multipliers for linearly constrained convex minimization," Computational Optimization and Applications, Springer, vol. 73(1), pages 237-273, May.
    7. Jonathan Eckstein, 2017. "A Simplified Form of Block-Iterative Operator Splitting and an Asynchronous Algorithm Resembling the Multi-Block Alternating Direction Method of Multipliers," Journal of Optimization Theory and Applications, Springer, vol. 173(1), pages 155-182, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Majela Pentón Machado & Mauricio Romero Sicre, 2023. "A Projective Splitting Method for Monotone Inclusions: Iteration-Complexity and Application to Composite Optimization," Journal of Optimization Theory and Applications, Springer, vol. 198(2), pages 552-587, August.
    2. Ernesto G. Birgin, 2020. "Preface of the special issue dedicated to the XII Brazilian workshop on continuous optimization," Computational Optimization and Applications, Springer, vol. 76(3), pages 615-619, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Majela Pentón Machado & Mauricio Romero Sicre, 2023. "A Projective Splitting Method for Monotone Inclusions: Iteration-Complexity and Application to Composite Optimization," Journal of Optimization Theory and Applications, Springer, vol. 198(2), pages 552-587, August.
    2. Patrick R. Johnstone & Jonathan Eckstein, 2021. "Single-forward-step projective splitting: exploiting cocoercivity," Computational Optimization and Applications, Springer, vol. 78(1), pages 125-166, January.
    3. Yunda Dong, 2021. "Weak convergence of an extended splitting method for monotone inclusions," Journal of Global Optimization, Springer, vol. 79(1), pages 257-277, January.
    4. Thai Chuong, 2013. "Newton-like methods for efficient solutions in vector optimization," Computational Optimization and Applications, Springer, vol. 54(3), pages 495-516, April.
    5. Jean-Pierre Crouzeix & Abdelhak Hassouni & Eladio Ocaña, 2023. "A Short Note on the Twice Differentiability of the Marginal Function of a Convex Function," Journal of Optimization Theory and Applications, Springer, vol. 198(2), pages 857-867, August.
    6. Liang Chen & Anping Liao, 2020. "On the Convergence Properties of a Second-Order Augmented Lagrangian Method for Nonlinear Programming Problems with Inequality Constraints," Journal of Optimization Theory and Applications, Springer, vol. 187(1), pages 248-265, October.
    7. Stefano Cipolla & Jacek Gondzio, 2023. "Proximal Stabilized Interior Point Methods and Low-Frequency-Update Preconditioning Techniques," Journal of Optimization Theory and Applications, Springer, vol. 197(3), pages 1061-1103, June.
    8. Bingsheng He & Li-Zhi Liao & Xiang Wang, 2012. "Proximal-like contraction methods for monotone variational inequalities in a unified framework I: Effective quadruplet and primary methods," Computational Optimization and Applications, Springer, vol. 51(2), pages 649-679, March.
    9. Marwan A. Kutbi & Abdul Latif & Xiaolong Qin, 2019. "Convergence of Two Splitting Projection Algorithms in Hilbert Spaces," Mathematics, MDPI, vol. 7(10), pages 1-13, October.
    10. Darinka Dentcheva & Gabriela Martinez & Eli Wolfhagen, 2016. "Augmented Lagrangian Methods for Solving Optimization Problems with Stochastic-Order Constraints," Operations Research, INFORMS, vol. 64(6), pages 1451-1465, December.
    11. Gui-Hua Lin & Zhen-Ping Yang & Hai-An Yin & Jin Zhang, 2023. "A dual-based stochastic inexact algorithm for a class of stochastic nonsmooth convex composite problems," Computational Optimization and Applications, Springer, vol. 86(2), pages 669-710, November.
    12. Gilles Bareilles & Yassine Laguel & Dmitry Grishchenko & Franck Iutzeler & Jérôme Malick, 2020. "Randomized Progressive Hedging methods for multi-stage stochastic programming," Annals of Operations Research, Springer, vol. 295(2), pages 535-560, December.
    13. Xiaoming Yuan, 2011. "An improved proximal alternating direction method for monotone variational inequalities with separable structure," Computational Optimization and Applications, Springer, vol. 49(1), pages 17-29, May.
    14. Zhu, Daoli & Marcotte, Patrice, 1995. "Coupling the auxiliary problem principle with descent methods of pseudoconvex programming," European Journal of Operational Research, Elsevier, vol. 83(3), pages 670-685, June.
    15. Guo, Zhaomiao & Fan, Yueyue, 2017. "A Stochastic Multi-Agent Optimization Model for Energy Infrastructure Planning Under Uncertainty and Competition," Institute of Transportation Studies, Working Paper Series qt89s5s8hn, Institute of Transportation Studies, UC Davis.
    16. Yong-Jin Liu & Jing Yu, 2023. "A semismooth Newton based dual proximal point algorithm for maximum eigenvalue problem," Computational Optimization and Applications, Springer, vol. 85(2), pages 547-582, June.
    17. Julian Rasch & Antonin Chambolle, 2020. "Inexact first-order primal–dual algorithms," Computational Optimization and Applications, Springer, vol. 76(2), pages 381-430, June.
    18. A. Ruszczynski, 1994. "On Augmented Lagrangian Decomposition Methods For Multistage Stochastic Programs," Working Papers wp94005, International Institute for Applied Systems Analysis.
    19. Gonçalves, M.L.N. & Lima, F.S. & Prudente, L.F., 2022. "A study of Liu-Storey conjugate gradient methods for vector optimization," Applied Mathematics and Computation, Elsevier, vol. 425(C).
    20. Liwei Zhang & Yule Zhang & Jia Wu & Xiantao Xiao, 2022. "Solving Stochastic Optimization with Expectation Constraints Efficiently by a Stochastic Augmented Lagrangian-Type Algorithm," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 2989-3006, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:76:y:2020:i:3:d:10.1007_s10589-020-00200-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.