IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v57y2014i2p271-306.html
   My bibliography  Save this article

An infeasible-point subgradient method using adaptive approximate projections

Author

Listed:
  • Dirk Lorenz
  • Marc Pfetsch
  • Andreas Tillmann

Abstract

We propose a new subgradient method for the minimization of nonsmooth convex functions over a convex set. To speed up computations we use adaptive approximate projections only requiring to move within a certain distance of the exact projections (which decreases in the course of the algorithm). In particular, the iterates in our method can be infeasible throughout the whole procedure. Nevertheless, we provide conditions which ensure convergence to an optimal feasible point under suitable assumptions. One convergence result deals with step size sequences that are fixed a priori. Two other results handle dynamic Polyak-type step sizes depending on a lower or upper estimate of the optimal objective function value, respectively. Additionally, we briefly sketch two applications: Optimization with convex chance constraints, and finding the minimum ℓ 1 -norm solution to an underdetermined linear system, an important problem in Compressed Sensing. Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • Dirk Lorenz & Marc Pfetsch & Andreas Tillmann, 2014. "An infeasible-point subgradient method using adaptive approximate projections," Computational Optimization and Applications, Springer, vol. 57(2), pages 271-306, March.
  • Handle: RePEc:spr:coopap:v:57:y:2014:i:2:p:271-306
    DOI: 10.1007/s10589-013-9602-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-013-9602-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10589-013-9602-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. Kuhn, 2009. "Convergent Bounds for Stochastic Programs with Expected Value Constraints," Journal of Optimization Theory and Applications, Springer, vol. 141(3), pages 597-618, June.
    2. Peter Kall & János Mayer, 2005. "Stochastic Linear Programming," International Series in Operations Research and Management Science, Springer, number 978-0-387-24440-2, January.
    3. Larsson, Torbjorn & Patriksson, Michael & Stromberg, Ann-Brith, 1996. "Conditional subgradient optimization -- Theory and applications," European Journal of Operational Research, Elsevier, vol. 88(2), pages 382-403, January.
    4. K. C. Kiwiel, 1998. "Subgradient Method with Entropic Projections for Convex Nondifferentiable Minimization," Journal of Optimization Theory and Applications, Springer, vol. 96(1), pages 159-173, January.
    5. Willem Haneveld & Maarten Vlerk, 2006. "Integrated Chance Constraints: Reduced Forms and an Algorithm," Computational Management Science, Springer, vol. 3(4), pages 245-269, September.
    6. Bazaraa, Mokhtar S. & Sherali, Hanif D., 1981. "On the choice of step size in subgradient optimization," European Journal of Operational Research, Elsevier, vol. 7(4), pages 380-388, August.
    7. NESTEROV, Yu., 2005. "Smooth minimization of non-smooth functions," LIDAM Reprints CORE 1819, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lorena, Luiz Antonio N. & Goncalves Narciso, Marcelo, 2002. "Using logical surrogate information in Lagrangean relaxation: An application to symmetric traveling salesman problems," European Journal of Operational Research, Elsevier, vol. 138(3), pages 473-483, May.
    2. Willem Klein Haneveld & Matthijs Streutker & Maarten Vlerk, 2010. "An ALM model for pension funds using integrated chance constraints," Annals of Operations Research, Springer, vol. 177(1), pages 47-62, June.
    3. Csaba Fábián & Olga Papp & Krisztián Eretnek, 2013. "Implementing the simplex method as a cutting-plane method, with a view to regularization," Computational Optimization and Applications, Springer, vol. 56(2), pages 343-368, October.
    4. Maingé, Paul-Emile, 2014. "A viscosity method with no spectral radius requirements for the split common fixed point problem," European Journal of Operational Research, Elsevier, vol. 235(1), pages 17-27.
    5. Lisa Göransson & Caroline Granfeldt & Ann-Brith Strömberg, 2021. "Management of Wind Power Variations in Electricity System Investment Models," SN Operations Research Forum, Springer, vol. 2(2), pages 1-30, June.
    6. Larsson, Torbjorn & Patriksson, Michael & Stromberg, Ann-Brith, 2003. "On the convergence of conditional [var epsilon]-subgradient methods for convex programs and convex-concave saddle-point problems," European Journal of Operational Research, Elsevier, vol. 151(3), pages 461-473, December.
    7. D. Kuhn, 2009. "Convergent Bounds for Stochastic Programs with Expected Value Constraints," Journal of Optimization Theory and Applications, Springer, vol. 141(3), pages 597-618, June.
    8. Ekin, Tahir, 2018. "Integrated maintenance and production planning with endogenous uncertain yield," Reliability Engineering and System Safety, Elsevier, vol. 179(C), pages 52-61.
    9. Juan Ma & Foad Mahdavi Pajouh & Balabhaskar Balasundaram & Vladimir Boginski, 2016. "The Minimum Spanning k -Core Problem with Bounded CVaR Under Probabilistic Edge Failures," INFORMS Journal on Computing, INFORMS, vol. 28(2), pages 295-307, May.
    10. Ken Kobayashi & Yuichi Takano & Kazuhide Nakata, 2021. "Bilevel cutting-plane algorithm for cardinality-constrained mean-CVaR portfolio optimization," Journal of Global Optimization, Springer, vol. 81(2), pages 493-528, October.
    11. Yaohua Hu & Carisa Kwok Wai Yu & Xiaoqi Yang, 2019. "Incremental quasi-subgradient methods for minimizing the sum of quasi-convex functions," Journal of Global Optimization, Springer, vol. 75(4), pages 1003-1028, December.
    12. Streutker, Matthijs & van der Vlerk, Maarten & Klein Haneveld, Wim, 2007. "Implementation of new regulatory rules in a multistage ALM model for Dutch pension funds," Research Report 07005, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    13. Mr. Udaibir S Das & Miss Yinqiu Lu & Mr. Michael G. Papaioannou & Iva Petrova, 2012. "Sovereign Risk and Asset and Liability Management: Conceptual Issues," IMF Working Papers 2012/241, International Monetary Fund.
    14. Jueyou Li & Zhiyou Wu & Changzhi Wu & Qiang Long & Xiangyu Wang, 2016. "An Inexact Dual Fast Gradient-Projection Method for Separable Convex Optimization with Linear Coupled Constraints," Journal of Optimization Theory and Applications, Springer, vol. 168(1), pages 153-171, January.
    15. Guoyin Li & Alfred Ma & Ting Pong, 2014. "Robust least square semidefinite programming with applications," Computational Optimization and Applications, Springer, vol. 58(2), pages 347-379, June.
    16. Masaru Ito, 2016. "New results on subgradient methods for strongly convex optimization problems with a unified analysis," Computational Optimization and Applications, Springer, vol. 65(1), pages 127-172, September.
    17. TAYLOR, Adrien B. & HENDRICKX, Julien M. & François GLINEUR, 2016. "Exact worst-case performance of first-order methods for composite convex optimization," LIDAM Discussion Papers CORE 2016052, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    18. Dimitris Bertsimas & Nishanth Mundru, 2021. "Sparse Convex Regression," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 262-279, January.
    19. Nadjib Brahimi & Stéphane Dauzère-Pérès & Najib M. Najid, 2006. "Capacitated Multi-Item Lot-Sizing Problems with Time Windows," Operations Research, INFORMS, vol. 54(5), pages 951-967, October.
    20. Fei Han & Jian Wang & Lingli Huang & Yan Li & Liu He, 2023. "Modeling Impacts of Implementation Policies of Tradable Credit Schemes on Traffic Congestion in the Context of Traveler’s Cognitive Illusion," Sustainability, MDPI, vol. 15(15), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:57:y:2014:i:2:p:271-306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.