IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v256y2015icp472-487.html
   My bibliography  Save this article

Inertial Douglas–Rachford splitting for monotone inclusion problems

Author

Listed:
  • Boţ, Radu Ioan
  • Csetnek, Ernö Robert
  • Hendrich, Christopher

Abstract

We propose an inertial Douglas–Rachford splitting algorithm for finding the set of zeros of the sum of two maximally monotone operators in Hilbert spaces and investigate its convergence properties. To this end we formulate first the inertial version of the Krasnosel’skiı̆–Mann algorithm for approximating the set of fixed points of a nonexpansive operator, for which we also provide an exhaustive convergence analysis. By using a product space approach we employ these results to the solving of monotone inclusion problems involving linearly composed and parallel-sum type operators and provide in this way iterative schemes where each of the maximally monotone mappings is accessed separately via its resolvent. We consider also the special instance of solving a primal–dual pair of nonsmooth convex optimization problems and illustrate the theoretical results via some numerical experiments in clustering and location theory.

Suggested Citation

  • Boţ, Radu Ioan & Csetnek, Ernö Robert & Hendrich, Christopher, 2015. "Inertial Douglas–Rachford splitting for monotone inclusion problems," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 472-487.
  • Handle: RePEc:eee:apmaco:v:256:y:2015:i:c:p:472-487
    DOI: 10.1016/j.amc.2015.01.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315000314
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.01.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Laurent Condat, 2013. "A Primal–Dual Splitting Method for Convex Optimization Involving Lipschitzian, Proximable and Linear Composite Terms," Journal of Optimization Theory and Applications, Springer, vol. 158(2), pages 460-479, August.
    2. NESTEROV, Yu., 2005. "Smooth minimization of non-smooth functions," LIDAM Reprints CORE 1819, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Degras, 2021. "Sparse group fused lasso for model segmentation: a hybrid approach," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(3), pages 625-671, September.
    2. Yunda Dong, 2021. "Weak convergence of an extended splitting method for monotone inclusions," Journal of Global Optimization, Springer, vol. 79(1), pages 257-277, January.
    3. Puya Latafat & Panagiotis Patrinos, 2017. "Asymmetric forward–backward–adjoint splitting for solving monotone inclusions involving three operators," Computational Optimization and Applications, Springer, vol. 68(1), pages 57-93, September.
    4. Xin Jiang & Lieven Vandenberghe, 2022. "Bregman primal–dual first-order method and application to sparse semidefinite programming," Computational Optimization and Applications, Springer, vol. 81(1), pages 127-159, January.
    5. Dirk Lorenz & Marc Pfetsch & Andreas Tillmann, 2014. "An infeasible-point subgradient method using adaptive approximate projections," Computational Optimization and Applications, Springer, vol. 57(2), pages 271-306, March.
    6. Jueyou Li & Zhiyou Wu & Changzhi Wu & Qiang Long & Xiangyu Wang, 2016. "An Inexact Dual Fast Gradient-Projection Method for Separable Convex Optimization with Linear Coupled Constraints," Journal of Optimization Theory and Applications, Springer, vol. 168(1), pages 153-171, January.
    7. Guoyin Li & Alfred Ma & Ting Pong, 2014. "Robust least square semidefinite programming with applications," Computational Optimization and Applications, Springer, vol. 58(2), pages 347-379, June.
    8. Masaru Ito, 2016. "New results on subgradient methods for strongly convex optimization problems with a unified analysis," Computational Optimization and Applications, Springer, vol. 65(1), pages 127-172, September.
    9. TAYLOR, Adrien B. & HENDRICKX, Julien M. & François GLINEUR, 2016. "Exact worst-case performance of first-order methods for composite convex optimization," LIDAM Discussion Papers CORE 2016052, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    10. Dimitris Bertsimas & Nishanth Mundru, 2021. "Sparse Convex Regression," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 262-279, January.
    11. Amir Beck & Shoham Sabach, 2015. "Weiszfeld’s Method: Old and New Results," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 1-40, January.
    12. Donghwan Kim & Jeffrey A. Fessler, 2021. "Optimizing the Efficiency of First-Order Methods for Decreasing the Gradient of Smooth Convex Functions," Journal of Optimization Theory and Applications, Springer, vol. 188(1), pages 192-219, January.
    13. Nguyen Thai An & Nguyen Mau Nam & Xiaolong Qin, 2020. "Solving k-center problems involving sets based on optimization techniques," Journal of Global Optimization, Springer, vol. 76(1), pages 189-209, January.
    14. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico, 2020. "Essentials of numerical nonsmooth optimization," 4OR, Springer, vol. 18(1), pages 1-47, March.
    15. Masoud Ahookhosh, 2019. "Accelerated first-order methods for large-scale convex optimization: nearly optimal complexity under strong convexity," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 89(3), pages 319-353, June.
    16. Radu Ioan Bot & Dang-Khoa Nguyen, 2020. "The Proximal Alternating Direction Method of Multipliers in the Nonconvex Setting: Convergence Analysis and Rates," Mathematics of Operations Research, INFORMS, vol. 45(2), pages 682-712, May.
    17. Julian Rasch & Antonin Chambolle, 2020. "Inexact first-order primal–dual algorithms," Computational Optimization and Applications, Springer, vol. 76(2), pages 381-430, June.
    18. Alexandre Belloni & Victor Chernozhukov & Lie Wang, 2013. "Pivotal estimation via square-root lasso in nonparametric regression," CeMMAP working papers CWP62/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    19. Chao, Shih-Kang & Härdle, Wolfgang K. & Yuan, Ming, 2021. "Factorisable Multitask Quantile Regression," Econometric Theory, Cambridge University Press, vol. 37(4), pages 794-816, August.
    20. Sun, Shilin & Wang, Tianyang & Yang, Hongxing & Chu, Fulei, 2022. "Damage identification of wind turbine blades using an adaptive method for compressive beamforming based on the generalized minimax-concave penalty function," Renewable Energy, Elsevier, vol. 181(C), pages 59-70.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:256:y:2015:i:c:p:472-487. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.