IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v204y2025i2d10.1007_s10957-024-02600-5.html
   My bibliography  Save this article

Krasnoselskii–Mann Iterations: Inertia, Perturbations and Approximation

Author

Listed:
  • Daniel Cortild

    (University of Groningen)

  • Juan Peypouquet

    (University of Groningen)

Abstract

This paper is concerned with the study of a family of fixed point iterations combining relaxation with different inertial (acceleration) principles. We provide a systematic, unified and insightful analysis of the hypotheses that ensure their weak, strong and linear convergence, either matching or improving previous results obtained by analysing particular cases separately. We also show that these methods are robust with respect to different kinds of perturbations–which may come from computational errors, intentional deviations, as well as regularisation or approximation schemes–under surprisingly weak assumptions. Although we mostly focus on theoretical aspects, numerical illustrations in image inpainting and electricity production markets reveal possible trends in the behaviour of these types of methods.

Suggested Citation

  • Daniel Cortild & Juan Peypouquet, 2025. "Krasnoselskii–Mann Iterations: Inertia, Perturbations and Approximation," Journal of Optimization Theory and Applications, Springer, vol. 204(2), pages 1-30, February.
  • Handle: RePEc:spr:joptap:v:204:y:2025:i:2:d:10.1007_s10957-024-02600-5
    DOI: 10.1007/s10957-024-02600-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-024-02600-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-024-02600-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:204:y:2025:i:2:d:10.1007_s10957-024-02600-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.