IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v90y2025i1d10.1007_s10589-024-00621-4.html
   My bibliography  Save this article

On a minimization problem of the maximum generalized eigenvalue: properties and algorithms

Author

Listed:
  • Akatsuki Nishioka

    (The University of Tokyo)

  • Mitsuru Toyoda

    (Tokyo Metropolitan University)

  • Mirai Tanaka

    (The Institute of Statistical Mathematics
    RIKEN Center for Advanced Intelligence Project)

  • Yoshihiro Kanno

    (The University of Tokyo
    The University of Tokyo)

Abstract

We study properties and algorithms of a minimization problem of the maximum generalized eigenvalue of symmetric-matrix-valued affine functions, which is nonsmooth and quasiconvex, and has application to eigenfrequency optimization of truss structures. We derive an explicit formula of the Clarke subdifferential of the maximum generalized eigenvalue and prove the maximum generalized eigenvalue is a pseudoconvex function, which is a subclass of a quasiconvex function, under suitable assumptions. Then, we consider smoothing methods to solve the problem. We introduce a smooth approximation of the maximum generalized eigenvalue and prove the convergence rate of the smoothing projected gradient method to a global optimal solution in the considered problem. Also, some heuristic techniques to reduce the computational costs, acceleration and inexact smoothing, are proposed and evaluated by numerical experiments.

Suggested Citation

  • Akatsuki Nishioka & Mitsuru Toyoda & Mirai Tanaka & Yoshihiro Kanno, 2025. "On a minimization problem of the maximum generalized eigenvalue: properties and algorithms," Computational Optimization and Applications, Springer, vol. 90(1), pages 303-336, January.
  • Handle: RePEc:spr:coopap:v:90:y:2025:i:1:d:10.1007_s10589-024-00621-4
    DOI: 10.1007/s10589-024-00621-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-024-00621-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-024-00621-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. NESTEROV, Yurii, 2007. "Smoothing technique and its applications in semidefinite optimization," LIDAM Reprints CORE 1951, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Yurii Nesterov, 2018. "Lectures on Convex Optimization," Springer Optimization and Its Applications, Springer, edition 2, number 978-3-319-91578-4, July.
    3. Quoc Tran-Dinh, 2017. "Adaptive smoothing algorithms for nonsmooth composite convex minimization," Computational Optimization and Applications, Springer, vol. 66(3), pages 425-451, April.
    4. Lv, Jian & Pang, Li-Ping & Wang, Jin-He, 2015. "Special backtracking proximal bundle method for nonconvex maximum eigenvalue optimization," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 635-651.
    5. Nesterov, Y. & Nemirovskii, A., 1995. "An interior-point method for generalized linear-fractional programming," LIDAM Reprints CORE 1168, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    6. Xiaoqi Yang & Chenchen Zu, 2022. "Convergence of Inexact Quasisubgradient Methods with Extrapolation," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 676-703, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shota Takahashi & Mituhiro Fukuda & Mirai Tanaka, 2022. "New Bregman proximal type algorithms for solving DC optimization problems," Computational Optimization and Applications, Springer, vol. 83(3), pages 893-931, December.
    2. Xin Jiang & Lieven Vandenberghe, 2022. "Bregman primal–dual first-order method and application to sparse semidefinite programming," Computational Optimization and Applications, Springer, vol. 81(1), pages 127-159, January.
    3. Huiyi Cao & Kamil A. Khan, 2023. "General convex relaxations of implicit functions and inverse functions," Journal of Global Optimization, Springer, vol. 86(3), pages 545-572, July.
    4. Fan-Yun Meng & Li-Ping Pang & Jian Lv & Jin-He Wang, 2017. "An approximate bundle method for solving nonsmooth equilibrium problems," Journal of Global Optimization, Springer, vol. 68(3), pages 537-562, July.
    5. Egor Gladin & Alexander Gasnikov & Pavel Dvurechensky, 2025. "Accuracy Certificates for Convex Minimization with Inexact Oracle," Journal of Optimization Theory and Applications, Springer, vol. 204(1), pages 1-23, January.
    6. Pavel Shcherbakov & Mingyue Ding & Ming Yuchi, 2021. "Random Sampling Many-Dimensional Sets Arising in Control," Mathematics, MDPI, vol. 9(5), pages 1-16, March.
    7. Fan Wu & Wei Bian, 2023. "Smoothing Accelerated Proximal Gradient Method with Fast Convergence Rate for Nonsmooth Convex Optimization Beyond Differentiability," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 539-572, May.
    8. Shariat Torbaghan, Shahab & Madani, Mehdi & Sels, Peter & Virag, Ana & Le Cadre, Hélène & Kessels, Kris & Mou, Yuting, 2021. "Designing day-ahead multi-carrier markets for flexibility: Models and clearing algorithms," Applied Energy, Elsevier, vol. 285(C).
    9. Vasile L. Basescu & John E. Mitchell, 2008. "An Analytic Center Cutting Plane Approach for Conic Programming," Mathematics of Operations Research, INFORMS, vol. 33(3), pages 529-551, August.
    10. Bo Zhang & YueLin Gao & Xia Liu & XiaoLi Huang, 2022. "An Outcome-Space-Based Branch-and-Bound Algorithm for a Class of Sum-of-Fractions Problems," Journal of Optimization Theory and Applications, Springer, vol. 192(3), pages 830-855, March.
    11. Jean-Jacques Forneron, 2023. "Noisy, Non-Smooth, Non-Convex Estimation of Moment Condition Models," Papers 2301.07196, arXiv.org, revised Feb 2023.
    12. Azimbek Khudoyberdiev & Shabir Ahmad & Israr Ullah & DoHyeun Kim, 2020. "An Optimization Scheme Based on Fuzzy Logic Control for Efficient Energy Consumption in Hydroponics Environment," Energies, MDPI, vol. 13(2), pages 1-27, January.
    13. David Müller & Vladimir Shikhman, 2022. "Network manipulation algorithm based on inexact alternating minimization," Computational Management Science, Springer, vol. 19(4), pages 627-664, October.
    14. Mehdi Karimi & Levent Tunçel, 2020. "Primal–Dual Interior-Point Methods for Domain-Driven Formulations," Mathematics of Operations Research, INFORMS, vol. 45(2), pages 591-621, May.
    15. Jie Zhang & Xinmin Yang & Gaoxi Li & Ke Zhang, 2023. "A smoothing proximal gradient algorithm with extrapolation for the relaxation of $${\ell_{0}}$$ ℓ 0 regularization problem," Computational Optimization and Applications, Springer, vol. 84(3), pages 737-760, April.
    16. Fosgerau, Mogens & Melo, Emerson & Shum, Matthew & Sørensen, Jesper R.-V., 2021. "Some remarks on CCP-based estimators of dynamic models," Economics Letters, Elsevier, vol. 204(C).
    17. Ramon de Punder & Timo Dimitriadis & Rutger-Jan Lange, 2024. "Kullback-Leibler-based characterizations of score-driven updates," Papers 2408.02391, arXiv.org, revised Sep 2024.
    18. Pham Duy Khanh & Boris S. Mordukhovich & Vo Thanh Phat & Dat Ba Tran, 2023. "Generalized damped Newton algorithms in nonsmooth optimization via second-order subdifferentials," Journal of Global Optimization, Springer, vol. 86(1), pages 93-122, May.
    19. Alexandre d'Aspremont & Noureddine El Karoui, 2013. "Weak Recovery Conditions from Graph Partitioning Bounds and Order Statistics," Mathematics of Operations Research, INFORMS, vol. 38(2), pages 228-247, May.
    20. Yurii Nesterov, 2024. "Primal Subgradient Methods with Predefined Step Sizes," Journal of Optimization Theory and Applications, Springer, vol. 203(3), pages 2083-2115, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:90:y:2025:i:1:d:10.1007_s10589-024-00621-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.