IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v157y2013i2d10.1007_s10957-012-0167-6.html
   My bibliography  Save this article

Subgradient Method for Nonconvex Nonsmooth Optimization

Author

Listed:
  • A. M. Bagirov

    (University of Ballarat)

  • L. Jin

    (University of Ballarat)

  • N. Karmitsa

    (University of Turku)

  • A. Al Nuaimat

    (University of Ballarat)

  • N. Sultanova

    (University of Ballarat)

Abstract

In this paper, we introduce a new method for solving nonconvex nonsmooth optimization problems. It uses quasisecants, which are subgradients computed in some neighborhood of a point. The proposed method contains simple procedures for finding descent directions and for solving line search subproblems. The convergence of the method is studied and preliminary results of numerical experiments are presented. The comparison of the proposed method with the subgradient and the proximal bundle methods is demonstrated using results of numerical experiments.

Suggested Citation

  • A. M. Bagirov & L. Jin & N. Karmitsa & A. Al Nuaimat & N. Sultanova, 2013. "Subgradient Method for Nonconvex Nonsmooth Optimization," Journal of Optimization Theory and Applications, Springer, vol. 157(2), pages 416-435, May.
  • Handle: RePEc:spr:joptap:v:157:y:2013:i:2:d:10.1007_s10957-012-0167-6
    DOI: 10.1007/s10957-012-0167-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-012-0167-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-012-0167-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C. Beltran & F. J. Heredia, 2005. "An Effective Line Search for the Subgradient Method," Journal of Optimization Theory and Applications, Springer, vol. 125(1), pages 1-18, April.
    2. ANSTREICHER, Kurt M. & WOLSEY, Laurence A., 2009. "Two "well known" properties of subgradient optimization," LIDAM Reprints CORE 2102, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. A. M. Bagirov & B. Karasözen & M. Sezer, 2008. "Discrete Gradient Method: Derivative-Free Method for Nonsmooth Optimization," Journal of Optimization Theory and Applications, Springer, vol. 137(2), pages 317-334, May.
    4. Adil Bagirov & Asef Ganjehlou, 2008. "An approximate subgradient algorithm for unconstrained nonsmooth, nonconvex optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 67(2), pages 187-206, April.
    5. A. Nedić & A. Ozdaglar, 2009. "Subgradient Methods for Saddle-Point Problems," Journal of Optimization Theory and Applications, Springer, vol. 142(1), pages 205-228, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Najmeh Hoseini Monjezi & S. Nobakhtian, 2021. "A filter proximal bundle method for nonsmooth nonconvex constrained optimization," Journal of Global Optimization, Springer, vol. 79(1), pages 1-37, January.
    2. Michael Herty & Sonja Steffensen & Anna Thunen, 2018. "Solving Quadratic Multi-Leader-Follower Games by Smoothing the Follower's Best Response," Papers 1808.07941, arXiv.org, revised Apr 2020.
    3. M. Alavi Hejazi & N. Movahedian & S. Nobakhtian, 2018. "On Constraint Qualifications and Sensitivity Analysis for General Optimization Problems via Pseudo-Jacobians," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 778-799, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Avinash N. Madavan & Subhonmesh Bose, 2021. "A Stochastic Primal-Dual Method for Optimization with Conditional Value at Risk Constraints," Journal of Optimization Theory and Applications, Springer, vol. 190(2), pages 428-460, August.
    2. Napsu Karmitsa, 2016. "Testing Different Nonsmooth Formulations of the Lennard–Jones Potential in Atomic Clustering Problems," Journal of Optimization Theory and Applications, Springer, vol. 171(1), pages 316-335, October.
    3. C. Beltran-Royo, 2009. "The radar method: an effective line search for piecewise linear concave functions," Annals of Operations Research, Springer, vol. 166(1), pages 299-312, February.
    4. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico, 2020. "Essentials of numerical nonsmooth optimization," 4OR, Springer, vol. 18(1), pages 1-47, March.
    5. Adil M. Bagirov & Julien Ugon & Hijran G. Mirzayeva, 2015. "Nonsmooth Optimization Algorithm for Solving Clusterwise Linear Regression Problems," Journal of Optimization Theory and Applications, Springer, vol. 164(3), pages 755-780, March.
    6. Vinayaka G. Yaji & Shalabh Bhatnagar, 2020. "Stochastic Recursive Inclusions in Two Timescales with Nonadditive Iterate-Dependent Markov Noise," Mathematics of Operations Research, INFORMS, vol. 45(4), pages 1405-1444, November.
    7. Liusheng Hou & Hongjin He & Junfeng Yang, 2016. "A partially parallel splitting method for multiple-block separable convex programming with applications to robust PCA," Computational Optimization and Applications, Springer, vol. 63(1), pages 273-303, January.
    8. Miguel A. Lejeune & John Turner, 2019. "Planning Online Advertising Using Gini Indices," Operations Research, INFORMS, vol. 67(5), pages 1222-1245, September.
    9. Guigues, Vincent & Shapiro, Alexander & Cheng, Yi, 2023. "Duality and sensitivity analysis of multistage linear stochastic programs," European Journal of Operational Research, Elsevier, vol. 308(2), pages 752-767.
    10. Andrea Simonetto & Hadi Jamali-Rad, 2016. "Primal Recovery from Consensus-Based Dual Decomposition for Distributed Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 168(1), pages 172-197, January.
    11. Bo Wei & William B. Haskell & Sixiang Zhao, 2020. "An inexact primal-dual algorithm for semi-infinite programming," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(3), pages 501-544, June.
    12. Qu, Shaojian & Liu, Chen & Goh, Mark & Li, Yijun & Ji, Ying, 2014. "Nonsmooth multiobjective programming with quasi-Newton methods," European Journal of Operational Research, Elsevier, vol. 235(3), pages 503-510.
    13. M. V. Dolgopolik, 2018. "A convergence analysis of the method of codifferential descent," Computational Optimization and Applications, Springer, vol. 71(3), pages 879-913, December.
    14. Guangming Zhou & Qin Wang & Wenjie Zhao, 2020. "Saddle points of rational functions," Computational Optimization and Applications, Springer, vol. 75(3), pages 817-832, April.
    15. A. Bagirov & J. Ugon, 2011. "Codifferential method for minimizing nonsmooth DC functions," Journal of Global Optimization, Springer, vol. 50(1), pages 3-22, May.
    16. Shuai Liu, 2019. "A simple version of bundle method with linear programming," Computational Optimization and Applications, Springer, vol. 72(2), pages 391-412, March.
    17. Hu, Mian & Wang, Yan-Wu & Xiao, Jiang-Wen & Lin, Xiangning, 2019. "Multi-energy management with hierarchical distributed multi-scale strategy for pelagic islanded microgrid clusters," Energy, Elsevier, vol. 185(C), pages 910-921.
    18. M. Golestani & H. Sadeghi & Y. Tavan, 2018. "Nonsmooth Multiobjective Problems and Generalized Vector Variational Inequalities Using Quasi-Efficiency," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 896-916, December.
    19. Simon Görtz & Andreas Klose, 2012. "A Simple but Usually Fast Branch-and-Bound Algorithm for the Capacitated Facility Location Problem," INFORMS Journal on Computing, INFORMS, vol. 24(4), pages 597-610, November.
    20. Beltran-Royo, C., 2007. "A conjugate Rosen's gradient projection method with global line search for piecewise linear concave optimization," European Journal of Operational Research, Elsevier, vol. 182(2), pages 536-551, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:157:y:2013:i:2:d:10.1007_s10957-012-0167-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.