IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v125y2005i1d10.1007_s10957-004-1708-4.html
   My bibliography  Save this article

An Effective Line Search for the Subgradient Method

Author

Listed:
  • C. Beltran

    (University of Geneva)

  • F. J. Heredia

    (Polytechnical University of Catalonia)

Abstract

One of the main drawbacks of the subgradient method is the tuning process to determine the sequence of steplengths. In this paper, the radar subgradient method, a heuristic method designed to compute a tuning-free subgradient steplength, is geometrically motivated and algebraically deduced. The unit commitment problem, which arises in the electrical engineering field, is used to compare the performance of the subgradient method with the new radar subgradient method.

Suggested Citation

  • C. Beltran & F. J. Heredia, 2005. "An Effective Line Search for the Subgradient Method," Journal of Optimization Theory and Applications, Springer, vol. 125(1), pages 1-18, April.
  • Handle: RePEc:spr:joptap:v:125:y:2005:i:1:d:10.1007_s10957-004-1708-4
    DOI: 10.1007/s10957-004-1708-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-004-1708-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-004-1708-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Monique Guignard, 2020. "Strong RLT1 bounds from decomposable Lagrangean relaxation for some quadratic 0–1 optimization problems with linear constraints," Annals of Operations Research, Springer, vol. 286(1), pages 173-200, March.
    2. A. M. Bagirov & L. Jin & N. Karmitsa & A. Al Nuaimat & N. Sultanova, 2013. "Subgradient Method for Nonconvex Nonsmooth Optimization," Journal of Optimization Theory and Applications, Springer, vol. 157(2), pages 416-435, May.
    3. Beltran-Royo, C., 2007. "A conjugate Rosen's gradient projection method with global line search for piecewise linear concave optimization," European Journal of Operational Research, Elsevier, vol. 182(2), pages 536-551, October.
    4. C. Beltran-Royo, 2009. "The radar method: an effective line search for piecewise linear concave functions," Annals of Operations Research, Springer, vol. 166(1), pages 299-312, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:125:y:2005:i:1:d:10.1007_s10957-004-1708-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.