IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v71y2018i3d10.1007_s10589-018-0024-0.html
   My bibliography  Save this article

A convergence analysis of the method of codifferential descent

Author

Listed:
  • M. V. Dolgopolik

    (Saint Petersburg State University
    Russian Academy of Sciences)

Abstract

This paper is devoted to a detailed convergence analysis of the method of codifferential descent (MCD) developed by professor V.F. Demyanov for solving a large class of nonsmooth nonconvex optimization problems. We propose a generalization of the MCD that is more suitable for applications than the original method, and that utilizes only a part of a codifferential on every iteration, which allows one to reduce the overall complexity of the method. With the use of some general results on uniformly codifferentiable functions obtained in this paper, we prove the global convergence of the generalized MCD in the infinite dimensional case. Also, we propose and analyse a quadratic regularization of the MCD, which is the first general method for minimizing a codifferentiable function over a convex set. Apart from convergence analysis, we also discuss the robustness of the MCD with respect to computational errors, possible step size rules, and a choice of parameters of the algorithm. In the end of the paper we estimate the rate of convergence of the MCD for a class of nonsmooth nonconvex functions that arise, in particular, in cluster analysis. We prove that under some general assumptions the method converges with linear rate, and it convergence quadratically, provided a certain first order sufficient optimality condition holds true.

Suggested Citation

  • M. V. Dolgopolik, 2018. "A convergence analysis of the method of codifferential descent," Computational Optimization and Applications, Springer, vol. 71(3), pages 879-913, December.
  • Handle: RePEc:spr:coopap:v:71:y:2018:i:3:d:10.1007_s10589-018-0024-0
    DOI: 10.1007/s10589-018-0024-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-018-0024-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-018-0024-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Bagirov & J. Ugon, 2011. "Codifferential method for minimizing nonsmooth DC functions," Journal of Global Optimization, Springer, vol. 50(1), pages 3-22, May.
    2. W. Hare & J. Nutini, 2013. "A derivative-free approximate gradient sampling algorithm for finite minimax problems," Computational Optimization and Applications, Springer, vol. 56(1), pages 1-38, September.
    3. A. M. Bagirov & B. Karasözen & M. Sezer, 2008. "Discrete Gradient Method: Derivative-Free Method for Nonsmooth Optimization," Journal of Optimization Theory and Applications, Springer, vol. 137(2), pages 317-334, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. V. Dolgopolik, 2020. "New global optimality conditions for nonsmooth DC optimization problems," Journal of Global Optimization, Springer, vol. 76(1), pages 25-55, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chad Davis & Warren Hare, 2013. "Exploiting Known Structures to Approximate Normal Cones," Mathematics of Operations Research, INFORMS, vol. 38(4), pages 665-681, November.
    2. Napsu Karmitsa, 2016. "Testing Different Nonsmooth Formulations of the Lennard–Jones Potential in Atomic Clustering Problems," Journal of Optimization Theory and Applications, Springer, vol. 171(1), pages 316-335, October.
    3. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico, 2020. "Essentials of numerical nonsmooth optimization," 4OR, Springer, vol. 18(1), pages 1-47, March.
    4. Adil M. Bagirov & Julien Ugon & Hijran G. Mirzayeva, 2015. "Nonsmooth Optimization Algorithm for Solving Clusterwise Linear Regression Problems," Journal of Optimization Theory and Applications, Springer, vol. 164(3), pages 755-780, March.
    5. Kaisa Joki & Adil M. Bagirov & Napsu Karmitsa & Marko M. Mäkelä, 2017. "A proximal bundle method for nonsmooth DC optimization utilizing nonconvex cutting planes," Journal of Global Optimization, Springer, vol. 68(3), pages 501-535, July.
    6. Xiaoliang Wang & Liping Pang & Qi Wu & Mingkun Zhang, 2021. "An Adaptive Proximal Bundle Method with Inexact Oracles for a Class of Nonconvex and Nonsmooth Composite Optimization," Mathematics, MDPI, vol. 9(8), pages 1-27, April.
    7. A. Bagirov & J. Ugon, 2011. "Codifferential method for minimizing nonsmooth DC functions," Journal of Global Optimization, Springer, vol. 50(1), pages 3-22, May.
    8. Angelo Ciccazzo & Vittorio Latorre & Giampaolo Liuzzi & Stefano Lucidi & Francesco Rinaldi, 2015. "Derivative-Free Robust Optimization for Circuit Design," Journal of Optimization Theory and Applications, Springer, vol. 164(3), pages 842-861, March.
    9. Shuai Liu, 2019. "A simple version of bundle method with linear programming," Computational Optimization and Applications, Springer, vol. 72(2), pages 391-412, March.
    10. W. Hare & C. Sagastizábal & M. Solodov, 2016. "A proximal bundle method for nonsmooth nonconvex functions with inexact information," Computational Optimization and Applications, Springer, vol. 63(1), pages 1-28, January.
    11. M. Golestani & H. Sadeghi & Y. Tavan, 2018. "Nonsmooth Multiobjective Problems and Generalized Vector Variational Inequalities Using Quasi-Efficiency," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 896-916, December.
    12. M. V. Dolgopolik, 2020. "New global optimality conditions for nonsmooth DC optimization problems," Journal of Global Optimization, Springer, vol. 76(1), pages 25-55, January.
    13. Jin-bao Jian & Qing-juan Hu & Chun-ming Tang, 2014. "Superlinearly Convergent Norm-Relaxed SQP Method Based on Active Set Identification and New Line Search for Constrained Minimax Problems," Journal of Optimization Theory and Applications, Springer, vol. 163(3), pages 859-883, December.
    14. K. C. Kiwiel, 2010. "Improved Convergence Result for the Discrete Gradient and Secant Methods for Nonsmooth Optimization," Journal of Optimization Theory and Applications, Springer, vol. 144(1), pages 69-75, January.
    15. A. M. Bagirov & L. Jin & N. Karmitsa & A. Al Nuaimat & N. Sultanova, 2013. "Subgradient Method for Nonconvex Nonsmooth Optimization," Journal of Optimization Theory and Applications, Springer, vol. 157(2), pages 416-435, May.
    16. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico, 2022. "Essentials of numerical nonsmooth optimization," Annals of Operations Research, Springer, vol. 314(1), pages 213-253, July.
    17. Adil Bagirov & Asef Ganjehlou, 2008. "An approximate subgradient algorithm for unconstrained nonsmooth, nonconvex optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 67(2), pages 187-206, April.
    18. Gonglin Yuan & Zehong Meng & Yong Li, 2016. "A Modified Hestenes and Stiefel Conjugate Gradient Algorithm for Large-Scale Nonsmooth Minimizations and Nonlinear Equations," Journal of Optimization Theory and Applications, Springer, vol. 168(1), pages 129-152, January.
    19. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico & Adil M. Bagirov, 2018. "Minimizing nonsmooth DC functions via successive DC piecewise-affine approximations," Journal of Global Optimization, Springer, vol. 71(1), pages 37-55, May.
    20. Nezam Mahdavi-Amiri & Rohollah Yousefpour, 2012. "An Effective Nonsmooth Optimization Algorithm for Locally Lipschitz Functions," Journal of Optimization Theory and Applications, Springer, vol. 155(1), pages 180-195, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:71:y:2018:i:3:d:10.1007_s10589-018-0024-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.