IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v137y2008i2d10.1007_s10957-007-9335-5.html
   My bibliography  Save this article

Discrete Gradient Method: Derivative-Free Method for Nonsmooth Optimization

Author

Listed:
  • A. M. Bagirov

    (University of Ballarat)

  • B. Karasözen

    (Middle East Technical University)

  • M. Sezer

    (Middle East Technical University)

Abstract

A new derivative-free method is developed for solving unconstrained nonsmooth optimization problems. This method is based on the notion of a discrete gradient. It is demonstrated that the discrete gradients can be used to approximate subgradients of a broad class of nonsmooth functions. It is also shown that the discrete gradients can be applied to find descent directions of nonsmooth functions. The preliminary results of numerical experiments with unconstrained nonsmooth optimization problems as well as the comparison of the proposed method with the nonsmooth optimization solver DNLP from CONOPT-GAMS and the derivative-free optimization solver CONDOR are presented.

Suggested Citation

  • A. M. Bagirov & B. Karasözen & M. Sezer, 2008. "Discrete Gradient Method: Derivative-Free Method for Nonsmooth Optimization," Journal of Optimization Theory and Applications, Springer, vol. 137(2), pages 317-334, May.
  • Handle: RePEc:spr:joptap:v:137:y:2008:i:2:d:10.1007_s10957-007-9335-5
    DOI: 10.1007/s10957-007-9335-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-007-9335-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-007-9335-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. E. Polak & J. O. Royset, 2003. "Algorithms for Finite and Semi-Infinite Min–Max–Min Problems Using Adaptive Smoothing Techniques," Journal of Optimization Theory and Applications, Springer, vol. 119(3), pages 421-457, December.
    2. Bagirov, Adil M. & Yearwood, John, 2006. "A new nonsmooth optimization algorithm for minimum sum-of-squares clustering problems," European Journal of Operational Research, Elsevier, vol. 170(2), pages 578-596, April.
    3. Robert Mifflin, 1977. "An Algorithm for Constrained Optimization with Semismooth Functions," Mathematics of Operations Research, INFORMS, vol. 2(2), pages 191-207, May.
    4. A. Bagirov & A. Rubinov & N. Soukhoroukova & J. Yearwood, 2003. "Unsupervised and supervised data classification via nonsmooth and global optimization," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 11(1), pages 1-75, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuai Liu, 2019. "A simple version of bundle method with linear programming," Computational Optimization and Applications, Springer, vol. 72(2), pages 391-412, March.
    2. Adil Bagirov & Julien Ugon & Dean Webb & Gurkan Ozturk & Refail Kasimbeyli, 2013. "A novel piecewise linear classifier based on polyhedral conic and max–min separabilities," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(1), pages 3-24, April.
    3. M. Golestani & H. Sadeghi & Y. Tavan, 2018. "Nonsmooth Multiobjective Problems and Generalized Vector Variational Inequalities Using Quasi-Efficiency," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 896-916, December.
    4. Adil M. Bagirov & Julien Ugon & Hijran G. Mirzayeva, 2015. "Nonsmooth Optimization Algorithm for Solving Clusterwise Linear Regression Problems," Journal of Optimization Theory and Applications, Springer, vol. 164(3), pages 755-780, March.
    5. A. M. Bagirov & L. Jin & N. Karmitsa & A. Al Nuaimat & N. Sultanova, 2013. "Subgradient Method for Nonconvex Nonsmooth Optimization," Journal of Optimization Theory and Applications, Springer, vol. 157(2), pages 416-435, May.
    6. Kalyanmoy Deb & Shivam Gupta & Joydeep Dutta & Bhoomija Ranjan, 2013. "Solving dual problems using a coevolutionary optimization algorithm," Journal of Global Optimization, Springer, vol. 57(3), pages 891-933, November.
    7. Gonglin Yuan & Zehong Meng & Yong Li, 2016. "A Modified Hestenes and Stiefel Conjugate Gradient Algorithm for Large-Scale Nonsmooth Minimizations and Nonlinear Equations," Journal of Optimization Theory and Applications, Springer, vol. 168(1), pages 129-152, January.
    8. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico, 2022. "Essentials of numerical nonsmooth optimization," Annals of Operations Research, Springer, vol. 314(1), pages 213-253, July.
    9. Adil Bagirov & Asef Ganjehlou, 2008. "An approximate subgradient algorithm for unconstrained nonsmooth, nonconvex optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 67(2), pages 187-206, April.
    10. A. Bagirov & B. Ordin & G. Ozturk & A. Xavier, 2015. "An incremental clustering algorithm based on hyperbolic smoothing," Computational Optimization and Applications, Springer, vol. 61(1), pages 219-241, May.
    11. Chad Davis & Warren Hare, 2013. "Exploiting Known Structures to Approximate Normal Cones," Mathematics of Operations Research, INFORMS, vol. 38(4), pages 665-681, November.
    12. Gaudioso, Manlio & Giallombardo, Giovanni & Mukhametzhanov, Marat, 2018. "Numerical infinitesimals in a variable metric method for convex nonsmooth optimization," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 312-320.
    13. Napsu Karmitsa, 2016. "Testing Different Nonsmooth Formulations of the Lennard–Jones Potential in Atomic Clustering Problems," Journal of Optimization Theory and Applications, Springer, vol. 171(1), pages 316-335, October.
    14. M. V. Dolgopolik, 2018. "A convergence analysis of the method of codifferential descent," Computational Optimization and Applications, Springer, vol. 71(3), pages 879-913, December.
    15. K. C. Kiwiel, 2010. "Improved Convergence Result for the Discrete Gradient and Secant Methods for Nonsmooth Optimization," Journal of Optimization Theory and Applications, Springer, vol. 144(1), pages 69-75, January.
    16. Nezam Mahdavi-Amiri & Rohollah Yousefpour, 2012. "An Effective Nonsmooth Optimization Algorithm for Locally Lipschitz Functions," Journal of Optimization Theory and Applications, Springer, vol. 155(1), pages 180-195, October.
    17. A. Bagirov & J. Ugon, 2011. "Codifferential method for minimizing nonsmooth DC functions," Journal of Global Optimization, Springer, vol. 50(1), pages 3-22, May.
    18. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico, 2020. "Essentials of numerical nonsmooth optimization," 4OR, Springer, vol. 18(1), pages 1-47, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adil Bagirov & Asef Ganjehlou, 2008. "An approximate subgradient algorithm for unconstrained nonsmooth, nonconvex optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 67(2), pages 187-206, April.
    2. Karmitsa, Napsu & Bagirov, Adil M. & Taheri, Sona, 2017. "New diagonal bundle method for clustering problems in large data sets," European Journal of Operational Research, Elsevier, vol. 263(2), pages 367-379.
    3. A. Bagirov & B. Ordin & G. Ozturk & A. Xavier, 2015. "An incremental clustering algorithm based on hyperbolic smoothing," Computational Optimization and Applications, Springer, vol. 61(1), pages 219-241, May.
    4. Bagirov, Adil M. & Ugon, Julien & Mirzayeva, Hijran, 2013. "Nonsmooth nonconvex optimization approach to clusterwise linear regression problems," European Journal of Operational Research, Elsevier, vol. 229(1), pages 132-142.
    5. Nezam Mahdavi-Amiri & Rohollah Yousefpour, 2012. "An Effective Nonsmooth Optimization Algorithm for Locally Lipschitz Functions," Journal of Optimization Theory and Applications, Springer, vol. 155(1), pages 180-195, October.
    6. Hui-juan Xiong & Bo Yu, 2010. "An aggregate deformation homotopy method for min-max-min problems with max-min constraints," Computational Optimization and Applications, Springer, vol. 47(3), pages 501-527, November.
    7. B. Rustem & S. Žaković & P. Parpas, 2008. "Convergence of an Interior Point Algorithm for Continuous Minimax," Journal of Optimization Theory and Applications, Springer, vol. 136(1), pages 87-103, January.
    8. Welington Oliveira, 2019. "Proximal bundle methods for nonsmooth DC programming," Journal of Global Optimization, Springer, vol. 75(2), pages 523-563, October.
    9. Angel Juan & Javier Faulin & Albert Ferrer & Helena Lourenço & Barry Barrios, 2013. "MIRHA: multi-start biased randomization of heuristics with adaptive local search for solving non-smooth routing problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(1), pages 109-132, April.
    10. H. Boualam & A. Roubi, 2019. "Proximal bundle methods based on approximate subgradients for solving Lagrangian duals of minimax fractional programs," Journal of Global Optimization, Springer, vol. 74(2), pages 255-284, June.
    11. Adil Bagirov, 2009. "Comments on: Optimization and data mining in medicine," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(2), pages 250-252, December.
    12. Xeniya Vladimirovna Grigor’eva, 2016. "Approximate Functions in a Problem of Sets Separation," Journal of Optimization Theory and Applications, Springer, vol. 171(2), pages 550-572, November.
    13. Freitas, Paulo S.A. & Rodrigues, Antonio J.L., 2006. "Model combination in neural-based forecasting," European Journal of Operational Research, Elsevier, vol. 173(3), pages 801-814, September.
    14. Yan-Chao Liang & Gui-Hua Lin, 2012. "Stationarity Conditions and Their Reformulations for Mathematical Programs with Vertical Complementarity Constraints," Journal of Optimization Theory and Applications, Springer, vol. 154(1), pages 54-70, July.
    15. Hanif D. Sherali & Churlzu Lim, 2007. "Enhancing Lagrangian Dual Optimization for Linear Programs by Obviating Nondifferentiability," INFORMS Journal on Computing, INFORMS, vol. 19(1), pages 3-13, February.
    16. Johannes O. Royset, 2016. "Preface," Journal of Optimization Theory and Applications, Springer, vol. 169(3), pages 713-718, June.
    17. Laura Palagi, 2019. "Global optimization issues in deep network regression: an overview," Journal of Global Optimization, Springer, vol. 73(2), pages 239-277, February.
    18. Rubinov, A.M. & Soukhorokova, N.V. & Ugon, J., 2006. "Classes and clusters in data analysis," European Journal of Operational Research, Elsevier, vol. 173(3), pages 849-865, September.
    19. Smail Addoune & Karima Boufi & Ahmed Roubi, 2018. "Proximal Bundle Algorithms for Nonlinearly Constrained Convex Minimax Fractional Programs," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 212-239, October.
    20. Churlzu Lim & Hanif Sherali, 2006. "A Trust Region Target Value Method for Optimizing Nondifferentiable Lagrangian Duals of Linear Programs," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 64(1), pages 33-53, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:137:y:2008:i:2:d:10.1007_s10957-007-9335-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.