IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v91y2020i3d10.1007_s00186-019-00698-2.html
   My bibliography  Save this article

An inexact primal-dual algorithm for semi-infinite programming

Author

Listed:
  • Bo Wei

    (National University of Singapore)

  • William B. Haskell

    (Purdue University)

  • Sixiang Zhao

    (Shanghai Jiao Tong University)

Abstract

This paper considers an inexact primal-dual algorithm for semi-infinite programming (SIP) for which it provides general error bounds. We create a new prox function for nonnegative measures for the dual update, and it turns out to be a generalization of the Kullback-Leibler divergence. We show that, with a tolerance for small errors (approximation and regularization error), this algorithm achieves an $${\mathcal {O}}(1/\sqrt{K})$$O(1/K) rate of convergence in terms of the optimality gap and constraint violation, where K is the total number of iterations. We then use our general error bounds to analyze the convergence and sample complexity of a specific primal-dual SIP algorithm based on Monte Carlo sampling. Finally, we provide numerical experiments to demonstrate the performance of this algorithm.

Suggested Citation

  • Bo Wei & William B. Haskell & Sixiang Zhao, 2020. "An inexact primal-dual algorithm for semi-infinite programming," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(3), pages 501-544, June.
  • Handle: RePEc:spr:mathme:v:91:y:2020:i:3:d:10.1007_s00186-019-00698-2
    DOI: 10.1007/s00186-019-00698-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00186-019-00698-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00186-019-00698-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nilay Noyan & Gábor Rudolf, 2013. "Optimization with Multivariate Conditional Value-at-Risk Constraints," Operations Research, INFORMS, vol. 61(4), pages 990-1013, August.
    2. Sanjay Mehrotra & David Papp, 2013. "A cutting surface algorithm for semi-infinite convex programming with an application to moment robust optimization," Papers 1306.3437, arXiv.org, revised Aug 2014.
    3. Lopez, Marco & Still, Georg, 2007. "Semi-infinite programming," European Journal of Operational Research, Elsevier, vol. 180(2), pages 491-518, July.
    4. Chen Ling & Qin Ni & Liqun Qi & Soon-Yi Wu, 2010. "A new smoothing Newton-type algorithm for semi-infinite programming," Journal of Global Optimization, Springer, vol. 47(1), pages 133-159, May.
    5. William Haskell & J. Shanthikumar & Z. Shen, 2013. "Optimization with a class of multivariate integral stochastic order constraints," Annals of Operations Research, Springer, vol. 206(1), pages 147-162, July.
    6. M. A. Goberna & M. A. López, 2017. "Recent contributions to linear semi-infinite optimization," 4OR, Springer, vol. 15(3), pages 221-264, September.
    7. Dong-Hui Li & Liqun Qi & Judy Tam & Soon-Yi Wu, 2004. "A Smoothing Newton Method for Semi-Infinite Programming," Journal of Global Optimization, Springer, vol. 30(2), pages 169-194, November.
    8. Goberna, M. A. & Lopez, M. A., 2002. "Linear semi-infinite programming theory: An updated survey," European Journal of Operational Research, Elsevier, vol. 143(2), pages 390-405, December.
    9. A. Nedić & A. Ozdaglar, 2009. "Subgradient Methods for Saddle-Point Problems," Journal of Optimization Theory and Applications, Springer, vol. 142(1), pages 205-228, July.
    10. Daniela Pucci de Farias & Benjamin Van Roy, 2004. "On Constraint Sampling in the Linear Programming Approach to Approximate Dynamic Programming," Mathematics of Operations Research, INFORMS, vol. 29(3), pages 462-478, August.
    11. Krzysztof C. Kiwiel & Torbjörn Larsson & P. O. Lindberg, 2007. "Lagrangian Relaxation via Ballstep Subgradient Methods," Mathematics of Operations Research, INFORMS, vol. 32(3), pages 669-686, August.
    12. S. Ito & Y. Liu & K.L. Teo, 2000. "A Dual Parametrization Method for Convex Semi-Infinite Programming," Annals of Operations Research, Springer, vol. 98(1), pages 189-213, December.
    13. Charalambos D. Aliprantis & Kim C. Border, 2006. "Infinite Dimensional Analysis," Springer Books, Springer, edition 0, number 978-3-540-29587-7, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bo Wei & William B. Haskell & Sixiang Zhao, 2020. "The CoMirror algorithm with random constraint sampling for convex semi-infinite programming," Annals of Operations Research, Springer, vol. 295(2), pages 809-841, December.
    2. Souvik Das & Ashwin Aravind & Ashish Cherukuri & Debasish Chatterjee, 2022. "Near-optimal solutions of convex semi-infinite programs via targeted sampling," Annals of Operations Research, Springer, vol. 318(1), pages 129-146, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bo Wei & William B. Haskell & Sixiang Zhao, 2020. "The CoMirror algorithm with random constraint sampling for convex semi-infinite programming," Annals of Operations Research, Springer, vol. 295(2), pages 809-841, December.
    2. Li-Ping Pang & Jian Lv & Jin-He Wang, 2016. "Constrained incremental bundle method with partial inexact oracle for nonsmooth convex semi-infinite programming problems," Computational Optimization and Applications, Springer, vol. 64(2), pages 433-465, June.
    3. Ping Jin & Chen Ling & Huifei Shen, 2015. "A smoothing Levenberg–Marquardt algorithm for semi-infinite programming," Computational Optimization and Applications, Springer, vol. 60(3), pages 675-695, April.
    4. S. Mishra & M. Jaiswal & H. Le Thi, 2012. "Nonsmooth semi-infinite programming problem using Limiting subdifferentials," Journal of Global Optimization, Springer, vol. 53(2), pages 285-296, June.
    5. Mengwei Xu & Soon-Yi Wu & Jane Ye, 2014. "Solving semi-infinite programs by smoothing projected gradient method," Computational Optimization and Applications, Springer, vol. 59(3), pages 591-616, December.
    6. Aguiar, Victor H. & Kashaev, Nail & Allen, Roy, 2023. "Prices, profits, proxies, and production," Journal of Econometrics, Elsevier, vol. 235(2), pages 666-693.
    7. Nazih Abderrazzak Gadhi, 2019. "Necessary optimality conditions for a nonsmooth semi-infinite programming problem," Journal of Global Optimization, Springer, vol. 74(1), pages 161-168, May.
    8. He, Li & Huang, Guo H. & Lu, Hongwei, 2011. "Bivariate interval semi-infinite programming with an application to environmental decision-making analysis," European Journal of Operational Research, Elsevier, vol. 211(3), pages 452-465, June.
    9. Takayuki Okuno & Masao Fukushima, 2014. "Local reduction based SQP-type method for semi-infinite programs with an infinite number of second-order cone constraints," Journal of Global Optimization, Springer, vol. 60(1), pages 25-48, September.
    10. Florian Gunsilius, 2019. "A path-sampling method to partially identify causal effects in instrumental variable models," Papers 1910.09502, arXiv.org, revised Jun 2020.
    11. Chen Ling & Qin Ni & Liqun Qi & Soon-Yi Wu, 2010. "A new smoothing Newton-type algorithm for semi-infinite programming," Journal of Global Optimization, Springer, vol. 47(1), pages 133-159, May.
    12. Amitabh Basu & Kipp Martin & Christopher Thomas Ryan, 2015. "Projection: A Unified Approach to Semi-Infinite Linear Programs and Duality in Convex Programming," Mathematics of Operations Research, INFORMS, vol. 40(1), pages 146-170, February.
    13. Hassan Bakhtiari & Hossein Mohebi, 2021. "Lagrange Multiplier Characterizations of Constrained Best Approximation with Infinite Constraints," Journal of Optimization Theory and Applications, Springer, vol. 189(3), pages 814-835, June.
    14. Li-Ping Pang & Qi Wu & Jin-He Wang & Qiong Wu, 2020. "A discretization algorithm for nonsmooth convex semi-infinite programming problems based on bundle methods," Computational Optimization and Applications, Springer, vol. 76(1), pages 125-153, May.
    15. Mohammad R. Oskoorouchi & Hamid R. Ghaffari & Tamás Terlaky & Dionne M. Aleman, 2011. "An Interior Point Constraint Generation Algorithm for Semi-Infinite Optimization with Health-Care Application," Operations Research, INFORMS, vol. 59(5), pages 1184-1197, October.
    16. S. Rivaz & M. A. Yaghoobi & M. Hladík, 2016. "Using modified maximum regret for finding a necessarily efficient solution in an interval MOLP problem," Fuzzy Optimization and Decision Making, Springer, vol. 15(3), pages 237-253, September.
    17. M. A. Goberna & M. A. López, 2018. "Recent contributions to linear semi-infinite optimization: an update," Annals of Operations Research, Springer, vol. 271(1), pages 237-278, December.
    18. Raffaello Seri & Christine Choirat, 2013. "Scenario Approximation of Robust and Chance-Constrained Programs," Journal of Optimization Theory and Applications, Springer, vol. 158(2), pages 590-614, August.
    19. Holger Berthold & Holger Heitsch & René Henrion & Jan Schwientek, 2022. "On the algorithmic solution of optimization problems subject to probabilistic/robust (probust) constraints," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 96(1), pages 1-37, August.
    20. Feng Guo & Xiaoxia Sun, 2020. "On semi-infinite systems of convex polynomial inequalities and polynomial optimization problems," Computational Optimization and Applications, Springer, vol. 75(3), pages 669-699, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:91:y:2020:i:3:d:10.1007_s00186-019-00698-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.