IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v179y2018i3d10.1007_s10957-017-1179-z.html
   My bibliography  Save this article

Nonsmooth Multiobjective Problems and Generalized Vector Variational Inequalities Using Quasi-Efficiency

Author

Listed:
  • M. Golestani

    (Fasa University)

  • H. Sadeghi

    (Shahid Chamran University of Ahvaz)

  • Y. Tavan

    (Shahid Chamran University of Ahvaz)

Abstract

In this paper, a multiobjective problem with a feasible set defined by inequality, equality and set constraints is considered, where the objective and constraint functions are locally Lipschitz. Here, a generalized Stampacchia vector variational inequality is formulated as a tool to characterize quasi- or weak quasi-efficient points. By using two new classes of generalized convexity functions, under suitable constraint qualifications, the equivalence between Kuhn–Tucker vector critical points, solutions to the multiobjective problem and solutions to the generalized Stampacchia vector variational inequality in both weak and strong forms will be proved.

Suggested Citation

  • M. Golestani & H. Sadeghi & Y. Tavan, 2018. "Nonsmooth Multiobjective Problems and Generalized Vector Variational Inequalities Using Quasi-Efficiency," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 896-916, December.
  • Handle: RePEc:spr:joptap:v:179:y:2018:i:3:d:10.1007_s10957-017-1179-z
    DOI: 10.1007/s10957-017-1179-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-017-1179-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-017-1179-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Adil M. Bagirov & Julien Ugon & Hijran G. Mirzayeva, 2015. "Nonsmooth Optimization Algorithm for Solving Clusterwise Linear Regression Problems," Journal of Optimization Theory and Applications, Springer, vol. 164(3), pages 755-780, March.
    2. Q. H. Ansari & G. M. Lee, 2010. "Nonsmooth Vector Optimization Problems and Minty Vector Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 145(1), pages 1-16, April.
    3. Behnam Soleimani, 2014. "Characterization of Approximate Solutions of Vector Optimization Problems with a Variable Order Structure," Journal of Optimization Theory and Applications, Springer, vol. 162(2), pages 605-632, August.
    4. S. K. Mishra & Vivek Laha, 2013. "A Note on the Paper “On Approximately Star-Shaped Functions and Approximate Vector Variational Inequalities”," Journal of Optimization Theory and Applications, Springer, vol. 159(2), pages 554-557, November.
    5. X. Q. Yang & C. J. Goh, 1997. "On Vector Variational Inequalities: Application to Vector Equilibria," Journal of Optimization Theory and Applications, Springer, vol. 95(2), pages 431-443, November.
    6. A. Engau & M. M. Wiecek, 2007. "Cone Characterizations of Approximate Solutions in Real Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 134(3), pages 499-513, September.
    7. S. K. Mishra & Vivek Laha, 2013. "On Approximately Star-Shaped Functions and Approximate Vector Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 156(2), pages 278-293, February.
    8. Bagirov, Adil M. & Ugon, Julien & Mirzayeva, Hijran, 2013. "Nonsmooth nonconvex optimization approach to clusterwise linear regression problems," European Journal of Operational Research, Elsevier, vol. 229(1), pages 132-142.
    9. A. M. Bagirov & B. Karasözen & M. Sezer, 2008. "Discrete Gradient Method: Derivative-Free Method for Nonsmooth Optimization," Journal of Optimization Theory and Applications, Springer, vol. 137(2), pages 317-334, May.
    10. X. Q. Yang, 1997. "Vector Variational Inequality and Vector Pseudolinear Optimization," Journal of Optimization Theory and Applications, Springer, vol. 95(3), pages 729-734, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Napsu Karmitsa, 2016. "Testing Different Nonsmooth Formulations of the Lennard–Jones Potential in Atomic Clustering Problems," Journal of Optimization Theory and Applications, Springer, vol. 171(1), pages 316-335, October.
    2. Adil M. Bagirov & Julien Ugon & Hijran G. Mirzayeva, 2015. "Nonsmooth Optimization Algorithm for Solving Clusterwise Linear Regression Problems," Journal of Optimization Theory and Applications, Springer, vol. 164(3), pages 755-780, March.
    3. S. Al-Homidan & Q. H. Ansari, 2010. "Generalized Minty Vector Variational-Like Inequalities and Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 144(1), pages 1-11, January.
    4. Ruiz-Garzon, G. & Osuna-Gomez, R. & Rufian-Lizana, A., 2004. "Relationships between vector variational-like inequality and optimization problems," European Journal of Operational Research, Elsevier, vol. 157(1), pages 113-119, August.
    5. Shashi Kant Mishra & Vivek Laha & Mohd Hassan, 2024. "On Quasiconvex Multiobjective Optimization and Variational Inequalities Using Greenberg–Pierskalla Based Generalized Subdifferentials," Journal of Optimization Theory and Applications, Springer, vol. 202(3), pages 1169-1186, September.
    6. Joki, Kaisa & Bagirov, Adil M. & Karmitsa, Napsu & Mäkelä, Marko M. & Taheri, Sona, 2020. "Clusterwise support vector linear regression," European Journal of Operational Research, Elsevier, vol. 287(1), pages 19-35.
    7. X. M. Yang & X. Q. Yang & K. L. Teo, 2004. "Some Remarks on the Minty Vector Variational Inequality," Journal of Optimization Theory and Applications, Springer, vol. 121(1), pages 193-201, April.
    8. S. K. Mishra & B. B. Upadhyay & Le Thi Hoai An, 2014. "Lagrange Multiplier Characterizations of Solution Sets of Constrained Nonsmooth Pseudolinear Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 160(3), pages 763-777, March.
    9. Lu-Chuan Ceng & Shuechin Huang, 2010. "Existence theorems for generalized vector variational inequalities with a variable ordering relation," Journal of Global Optimization, Springer, vol. 46(4), pages 521-535, April.
    10. Yunan Wu & Yuchen Peng & Long Peng & Ling Xu, 2012. "Super Efficiency of Multicriterion Network Equilibrium Model and Vector Variational Inequality," Journal of Optimization Theory and Applications, Springer, vol. 153(2), pages 485-496, May.
    11. Vivek Laha & Harsh Narayan Singh, 2023. "On quasidifferentiable mathematical programs with equilibrium constraints," Computational Management Science, Springer, vol. 20(1), pages 1-20, December.
    12. Roberto Mari & Roberto Rocci & Stefano Antonio Gattone, 2020. "Scale-constrained approaches for maximum likelihood estimation and model selection of clusterwise linear regression models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(1), pages 49-78, March.
    13. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico, 2020. "Essentials of numerical nonsmooth optimization," 4OR, Springer, vol. 18(1), pages 1-47, March.
    14. Andrea Raith & Judith Wang & Matthias Ehrgott & Stuart Mitchell, 2014. "Solving multi-objective traffic assignment," Annals of Operations Research, Springer, vol. 222(1), pages 483-516, November.
    15. Sabo, Kristian & Grahovac, Danijel & Scitovski, Rudolf, 2020. "Incremental method for multiple line detection problem — iterative reweighted approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 588-602.
    16. L. P. Hai & L. Huerga & P. Q. Khanh & V. Novo, 2019. "Variants of the Ekeland variational principle for approximate proper solutions of vector equilibrium problems," Journal of Global Optimization, Springer, vol. 74(2), pages 361-382, June.
    17. Engau, Alexander, 2009. "Tradeoff-based decomposition and decision-making in multiobjective programming," European Journal of Operational Research, Elsevier, vol. 199(3), pages 883-891, December.
    18. Gabriele Eichfelder & Maria Pilecka, 2016. "Set Approach for Set Optimization with Variable Ordering Structures Part I: Set Relations and Relationship to Vector Approach," Journal of Optimization Theory and Applications, Springer, vol. 171(3), pages 931-946, December.
    19. Syed Shakaib Irfan & Mijanur Rahaman & Iqbal Ahmad & Rais Ahmad & Saddam Husain, 2019. "Generalized Nonsmooth Exponential-Type Vector Variational-Like Inequalities and Nonsmooth Vector Optimization Problems in Asplund Spaces," Mathematics, MDPI, vol. 7(4), pages 1-11, April.
    20. L. Q. Anh & P. Q. Khanh, 2009. "Hölder Continuity of the Unique Solution to Quasiequilibrium Problems in Metric Spaces," Journal of Optimization Theory and Applications, Springer, vol. 141(1), pages 37-54, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:179:y:2018:i:3:d:10.1007_s10957-017-1179-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.