IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v141y2009i2d10.1007_s10957-008-9473-4.html
   My bibliography  Save this article

An Algorithm for the Global Optimization of a Class of Continuous Minimax Problems

Author

Listed:
  • P. Parpas

    (Imperial College)

  • B. Rustem

    (Imperial College)

Abstract

We propose an algorithm for the global optimization of continuous minimax problems involving polynomials. The method can be described as a discretization approach to the well known semi-infinite formulation of the problem. We proceed by approximating the infinite number of constraints using tools and techniques from semidefinite programming. We then show that, under appropriate conditions, the SDP approximation converges to the globally optimal solution of the problem. We also discuss the numerical performance of the method on some test problems.

Suggested Citation

  • P. Parpas & B. Rustem, 2009. "An Algorithm for the Global Optimization of a Class of Continuous Minimax Problems," Journal of Optimization Theory and Applications, Springer, vol. 141(2), pages 461-473, May.
  • Handle: RePEc:spr:joptap:v:141:y:2009:i:2:d:10.1007_s10957-008-9473-4
    DOI: 10.1007/s10957-008-9473-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-008-9473-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-008-9473-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stanislav Žaković & Costas Pantelides & Berc Rustem, 2000. "An Interior Point Algorithm for Computing Saddle Points of Constrained Continuous Minimax," Annals of Operations Research, Springer, vol. 99(1), pages 59-77, December.
    2. Stanislav Žaković & Berc Rustem, 2003. "Semi-Infinite Programming and Applications to Minimax Problems," Annals of Operations Research, Springer, vol. 124(1), pages 81-110, November.
    3. B. Rustem & S. Žaković & P. Parpas, 2008. "Convergence of an Interior Point Algorithm for Continuous Minimax," Journal of Optimization Theory and Applications, Springer, vol. 136(1), pages 87-103, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Julien Marzat & Eric Walter & Hélène Piet-Lahanier, 2013. "Worst-case global optimization of black-box functions through Kriging and relaxation," Journal of Global Optimization, Springer, vol. 55(4), pages 707-727, April.
    2. Feng Guo & Xiaoxia Sun, 2020. "On semi-infinite systems of convex polynomial inequalities and polynomial optimization problems," Computational Optimization and Applications, Springer, vol. 75(3), pages 669-699, April.
    3. J. Lasserre, 2011. "Min-max and robust polynomial optimization," Journal of Global Optimization, Springer, vol. 51(1), pages 1-10, September.
    4. Olga Kostyukova & Tatiana Tchemisova, 2017. "Optimality Conditions for Convex Semi-infinite Programming Problems with Finitely Representable Compact Index Sets," Journal of Optimization Theory and Applications, Springer, vol. 175(1), pages 76-103, October.
    5. Yu, Shui & Wu, Xiao & Zhao, Dongyu & Li, Yun, 2024. "A two-level surrogate framework for demand-objective time-variant reliability-based design optimization," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    6. Luo, Xin & Sun, Min, 2022. "Development of modal interval algorithm for solving continuous minimax problems," Applied Mathematics and Computation, Elsevier, vol. 422(C).
    7. Feng Guo & Liguo Jiao, 2021. "On solving a class of fractional semi-infinite polynomial programming problems," Computational Optimization and Applications, Springer, vol. 80(2), pages 439-481, November.
    8. Li Wang & Feng Guo, 2014. "Semidefinite relaxations for semi-infinite polynomial programming," Computational Optimization and Applications, Springer, vol. 58(1), pages 133-159, May.
    9. J. Lasserre, 2012. "An algorithm for semi-infinite polynomial optimization," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(1), pages 119-129, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tadeusz Antczak & Najeeb Abdulaleem, 2021. "E-differentiable minimax programming under E-convexity," Annals of Operations Research, Springer, vol. 300(1), pages 1-22, May.
    2. Hakan Kaya, 2017. "Managing ambiguity in asset allocation," Journal of Asset Management, Palgrave Macmillan, vol. 18(3), pages 163-187, May.
    3. Vicente J. Bolós & Rafael Benítez & Vicente Coll-Serrano, 2023. "Continuous models combining slacks-based measures of efficiency and super-efficiency," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(2), pages 363-391, June.
    4. Duarte, Belmiro P.M. & Sagnol, Guillaume & Wong, Weng Kee, 2018. "An algorithm based on semidefinite programming for finding minimax optimal designs," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 99-117.
    5. Li-Ping Pang & Qi Wu & Jin-He Wang & Qiong Wu, 2020. "A discretization algorithm for nonsmooth convex semi-infinite programming problems based on bundle methods," Computational Optimization and Applications, Springer, vol. 76(1), pages 125-153, May.
    6. Martina Kuchlbauer & Frauke Liers & Michael Stingl, 2022. "Adaptive Bundle Methods for Nonlinear Robust Optimization," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2106-2124, July.
    7. Raffaello Seri & Christine Choirat, 2013. "Scenario Approximation of Robust and Chance-Constrained Programs," Journal of Optimization Theory and Applications, Springer, vol. 158(2), pages 590-614, August.
    8. Dimitris Bertsimas & Omid Nohadani & Kwong Meng Teo, 2010. "Robust Optimization for Unconstrained Simulation-Based Problems," Operations Research, INFORMS, vol. 58(1), pages 161-178, February.
    9. Michalis Kapsos & Nicos Christofides & Berc Rustem, 2018. "Robust risk budgeting," Annals of Operations Research, Springer, vol. 266(1), pages 199-221, July.
    10. Zheng, Liang & Bao, Ji & Xu, Chengcheng & Tan, Zhen, 2022. "Biobjective robust simulation-based optimization for unconstrained problems," European Journal of Operational Research, Elsevier, vol. 299(1), pages 249-262.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:141:y:2009:i:2:d:10.1007_s10957-008-9473-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.