IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v71y2018i1d10.1007_s10589-018-9999-9.html
   My bibliography  Save this article

An effective adaptive trust region algorithm for nonsmooth minimization

Author

Listed:
  • Zhou Sheng

    (Guangxi University)

  • Gonglin Yuan

    (Guangxi University)

Abstract

In this paper, an adaptive trust region algorithm that uses Moreau–Yosida regularization is proposed for solving nonsmooth unconstrained optimization problems. The proposed algorithm combines a modified secant equation with the BFGS update formula and an adaptive trust region radius, and the new trust region radius utilizes not only the function information but also the gradient information. The global convergence and the local superlinear convergence of the proposed algorithm are proven under suitable conditions. Finally, the preliminary results from comparing the proposed algorithm with some existing algorithms using numerical experiments reveal that the proposed algorithm is quite promising for solving nonsmooth unconstrained optimization problems.

Suggested Citation

  • Zhou Sheng & Gonglin Yuan, 2018. "An effective adaptive trust region algorithm for nonsmooth minimization," Computational Optimization and Applications, Springer, vol. 71(1), pages 251-271, September.
  • Handle: RePEc:spr:coopap:v:71:y:2018:i:1:d:10.1007_s10589-018-9999-9
    DOI: 10.1007/s10589-018-9999-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-018-9999-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-018-9999-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gonglin Yuan & Zehong Meng & Yong Li, 2016. "A Modified Hestenes and Stiefel Conjugate Gradient Algorithm for Large-Scale Nonsmooth Minimizations and Nonlinear Equations," Journal of Optimization Theory and Applications, Springer, vol. 168(1), pages 129-152, January.
    2. Zhaocheng Cui & Boying Wu, 2012. "A new modified nonmonotone adaptive trust region method for unconstrained optimization," Computational Optimization and Applications, Springer, vol. 53(3), pages 795-806, December.
    3. E. Polak & J. O. Royset, 2003. "Algorithms for Finite and Semi-Infinite Min–Max–Min Problems Using Adaptive Smoothing Techniques," Journal of Optimization Theory and Applications, Springer, vol. 119(3), pages 421-457, December.
    4. Zengru Cui & Gonglin Yuan & Zhou Sheng & Wenjie Liu & Xiaoliang Wang & Xiabin Duan, 2015. "A Modified BFGS Formula Using a Trust Region Model for Nonsmooth Convex Minimizations," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-15, October.
    5. Gonglin Yuan & Zhou Sheng & Wenjie Liu, 2016. "The Modified HZ Conjugate Gradient Algorithm for Large-Scale Nonsmooth Optimization," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-15, October.
    6. Liqun Qi, 1993. "Convergence Analysis of Some Algorithms for Solving Nonsmooth Equations," Mathematics of Operations Research, INFORMS, vol. 18(1), pages 227-244, February.
    7. Shi, Zhenjun & Wang, Shengquan, 2011. "Nonmonotone adaptive trust region method," European Journal of Operational Research, Elsevier, vol. 208(1), pages 28-36, January.
    8. Adil Bagirov & Napsu Karmitsa & Marko M. Mäkelä, 2014. "Introduction to Nonsmooth Optimization," Springer Books, Springer, edition 127, number 978-3-319-08114-4, December.
    9. A. I. Rauf & M. Fukushima, 2000. "Globally Convergent BFGS Method for Nonsmooth Convex Optimization1," Journal of Optimization Theory and Applications, Springer, vol. 104(3), pages 539-558, March.
    10. Z. Akbari & R. Yousefpour & M. Reza Peyghami, 2015. "A New Nonsmooth Trust Region Algorithm for Locally Lipschitz Unconstrained Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 164(3), pages 733-754, March.
    11. Gonglin Yuan & Zengxin Wei & Zhongxing Wang, 2013. "Gradient trust region algorithm with limited memory BFGS update for nonsmooth convex minimization," Computational Optimization and Applications, Springer, vol. 54(1), pages 45-64, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yong Li & Gonglin Yuan & Zhou Sheng, 2018. "An active-set algorithm for solving large-scale nonsmooth optimization models with box constraints," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-16, January.
    2. Tsegay Giday Woldu & Haibin Zhang & Xin Zhang & Yemane Hailu Fissuh, 2020. "A Modified Nonlinear Conjugate Gradient Algorithm for Large-Scale Nonsmooth Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 185(1), pages 223-238, April.
    3. Qi Tian & Xiaoliang Wang & Liping Pang & Mingkun Zhang & Fanyun Meng, 2021. "A New Hybrid Three-Term Conjugate Gradient Algorithm for Large-Scale Unconstrained Problems," Mathematics, MDPI, vol. 9(12), pages 1-13, June.
    4. Gonglin Yuan & Zhou Sheng & Wenjie Liu, 2016. "The Modified HZ Conjugate Gradient Algorithm for Large-Scale Nonsmooth Optimization," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-15, October.
    5. Jianjun Liu & Xiangmin Xu & Xuehui Cui, 2018. "An accelerated nonmonotone trust region method with adaptive trust region for unconstrained optimization," Computational Optimization and Applications, Springer, vol. 69(1), pages 77-97, January.
    6. Gonglin Yuan & Zehong Meng & Yong Li, 2016. "A Modified Hestenes and Stiefel Conjugate Gradient Algorithm for Large-Scale Nonsmooth Minimizations and Nonlinear Equations," Journal of Optimization Theory and Applications, Springer, vol. 168(1), pages 129-152, January.
    7. Napsu Karmitsa, 2015. "Diagonal Bundle Method for Nonsmooth Sparse Optimization," Journal of Optimization Theory and Applications, Springer, vol. 166(3), pages 889-905, September.
    8. Zengru Cui & Gonglin Yuan & Zhou Sheng & Wenjie Liu & Xiaoliang Wang & Xiabin Duan, 2015. "A Modified BFGS Formula Using a Trust Region Model for Nonsmooth Convex Minimizations," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-15, October.
    9. Dong-Hui Li & Liqun Qi & Judy Tam & Soon-Yi Wu, 2004. "A Smoothing Newton Method for Semi-Infinite Programming," Journal of Global Optimization, Springer, vol. 30(2), pages 169-194, November.
    10. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico, 2018. "Minimizing Piecewise-Concave Functions Over Polyhedra," Mathematics of Operations Research, INFORMS, vol. 43(2), pages 580-597, May.
    11. Hui-juan Xiong & Bo Yu, 2010. "An aggregate deformation homotopy method for min-max-min problems with max-min constraints," Computational Optimization and Applications, Springer, vol. 47(3), pages 501-527, November.
    12. John Duggan & Tasos Kalandrakis, 2011. "A Newton collocation method for solving dynamic bargaining games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 36(3), pages 611-650, April.
    13. M. Reza Peyghami & D. Ataee Tarzanagh, 2015. "A relaxed nonmonotone adaptive trust region method for solving unconstrained optimization problems," Computational Optimization and Applications, Springer, vol. 61(2), pages 321-341, June.
    14. Liang Chen & Anping Liao, 2020. "On the Convergence Properties of a Second-Order Augmented Lagrangian Method for Nonlinear Programming Problems with Inequality Constraints," Journal of Optimization Theory and Applications, Springer, vol. 187(1), pages 248-265, October.
    15. B. Rustem & S. Žaković & P. Parpas, 2008. "Convergence of an Interior Point Algorithm for Continuous Minimax," Journal of Optimization Theory and Applications, Springer, vol. 136(1), pages 87-103, January.
    16. Konstantin Sonntag & Bennet Gebken & Georg Müller & Sebastian Peitz & Stefan Volkwein, 2024. "A Descent Method for Nonsmooth Multiobjective Optimization in Hilbert Spaces," Journal of Optimization Theory and Applications, Springer, vol. 203(1), pages 455-487, October.
    17. H. Xu & B. M. Glover, 1997. "New Version of the Newton Method for Nonsmooth Equations," Journal of Optimization Theory and Applications, Springer, vol. 93(2), pages 395-415, May.
    18. Ralf Münnich & Ekkehard Sachs & Matthias Wagner, 2012. "Calibration of estimator-weights via semismooth Newton method," Journal of Global Optimization, Springer, vol. 52(3), pages 471-485, March.
    19. Karmitsa, Napsu & Bagirov, Adil M. & Taheri, Sona, 2017. "New diagonal bundle method for clustering problems in large data sets," European Journal of Operational Research, Elsevier, vol. 263(2), pages 367-379.
    20. Napsu Karmitsa, 2016. "Testing Different Nonsmooth Formulations of the Lennard–Jones Potential in Atomic Clustering Problems," Journal of Optimization Theory and Applications, Springer, vol. 171(1), pages 316-335, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:71:y:2018:i:1:d:10.1007_s10589-018-9999-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.