IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v31y2020i3d10.1007_s10845-019-01476-x.html
   My bibliography  Save this article

Segmentation-based deep-learning approach for surface-defect detection

Author

Listed:
  • Domen Tabernik

    (University of Ljubljana)

  • Samo Šela

    (Kolektor Group d. o. o.)

  • Jure Skvarč

    (Kolektor Orodjarna d. o. o.)

  • Danijel Skočaj

    (University of Ljubljana)

Abstract

Automated surface-anomaly detection using machine learning has become an interesting and promising area of research, with a very high and direct impact on the application domain of visual inspection. Deep-learning methods have become the most suitable approaches for this task. They allow the inspection system to learn to detect the surface anomaly by simply showing it a number of exemplar images. This paper presents a segmentation-based deep-learning architecture that is designed for the detection and segmentation of surface anomalies and is demonstrated on a specific domain of surface-crack detection. The design of the architecture enables the model to be trained using a small number of samples, which is an important requirement for practical applications. The proposed model is compared with the related deep-learning methods, including the state-of-the-art commercial software, showing that the proposed approach outperforms the related methods on the specific domain of surface-crack detection. The large number of experiments also shed light on the required precision of the annotation, the number of required training samples and on the required computational cost. Experiments are performed on a newly created dataset based on a real-world quality control case and demonstrates that the proposed approach is able to learn on a small number of defected surfaces, using only approximately 25–30 defective training samples, instead of hundreds or thousands, which is usually the case in deep-learning applications. This makes the deep-learning method practical for use in industry where the number of available defective samples is limited. The dataset is also made publicly available to encourage the development and evaluation of new methods for surface-defect detection.

Suggested Citation

  • Domen Tabernik & Samo Šela & Jure Skvarč & Danijel Skočaj, 2020. "Segmentation-based deep-learning approach for surface-defect detection," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 759-776, March.
  • Handle: RePEc:spr:joinma:v:31:y:2020:i:3:d:10.1007_s10845-019-01476-x
    DOI: 10.1007/s10845-019-01476-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-019-01476-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-019-01476-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Francisco G. Bulnes & Ruben Usamentiaga & Daniel F. Garcia & J. Molleda, 2016. "An efficient method for defect detection during the manufacturing of web materials," Journal of Intelligent Manufacturing, Springer, vol. 27(2), pages 431-445, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. José M. Navarro-Jiménez & José V. Aguado & Grégoire Bazin & Vicente Albero & Domenico Borzacchiello, 2023. "Reconstruction of 3D surfaces from incomplete digitisations using statistical shape models for manufacturing processes," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2345-2358, June.
    2. Abtin Djavadifar & John Brandon Graham-Knight & Marian Kӧrber & Patricia Lasserre & Homayoun Najjaran, 2022. "Automated visual detection of geometrical defects in composite manufacturing processes using deep convolutional neural networks," Journal of Intelligent Manufacturing, Springer, vol. 33(8), pages 2257-2275, December.
    3. Yuanyuan Wang & Ling Ma & Lihua Jian & Huiqin Jiang, 2023. "Conductive particle detection via efficient encoder–decoder network," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3563-3577, December.
    4. Swarit Anand Singh & K. A. Desai, 2023. "Automated surface defect detection framework using machine vision and convolutional neural networks," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1995-2011, April.
    5. Ruiyang Hao & Bingyu Lu & Ying Cheng & Xiu Li & Biqing Huang, 2021. "A steel surface defect inspection approach towards smart industrial monitoring," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 1833-1843, October.
    6. Changqing Wang & Maoxuan Sun & Yuan Cao & Kunyu He & Bei Zhang & Zhonghao Cao & Meng Wang, 2023. "Lightweight Network-Based Surface Defect Detection Method for Steel Plates," Sustainability, MDPI, vol. 15(4), pages 1-12, February.
    7. Nhat-To Huynh & Duong-Dong Ho & Hong-Nguyen Nguyen, 2023. "An Approach for Designing an Optimal CNN Model Based on Auto-Tuning GA with 2D Chromosome for Defect Detection and Classification," Sustainability, MDPI, vol. 15(6), pages 1-14, March.
    8. Chun Fai Lui & Ahmed Maged & Min Xie, 2024. "A novel image feature based self-supervised learning model for effective quality inspection in additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 35(7), pages 3543-3558, October.
    9. Rong Luo & Ruihu Chen & Fengting Jia & Biru Lin & Jie Liu & Yafei Sun & Xinbo Yang & Weikuan Jia, 2023. "RBD-Net: robust breakage detection algorithm for industrial leather," Journal of Intelligent Manufacturing, Springer, vol. 34(6), pages 2783-2796, August.
    10. Zhenxing Cheng & Hu Wang & Gui-Rong Liu, 2021. "Deep convolutional neural network aided optimization for cold spray 3D simulation based on molecular dynamics," Journal of Intelligent Manufacturing, Springer, vol. 32(4), pages 1009-1023, April.
    11. Danqing Kang & Jianhuang Lai & Junyong Zhu & Yu Han, 2023. "An adaptive feature reconstruction network for the precise segmentation of surface defects on printed circuit boards," Journal of Intelligent Manufacturing, Springer, vol. 34(7), pages 3197-3214, October.
    12. Feiyang Li & Nian Cai & Xueliang Deng & Jiahao Li & Jianfa Lin & Han Wang, 2022. "Serial number inspection for ceramic membranes via an end-to-end photometric-induced convolutional neural network framework," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1373-1392, June.
    13. Saksham Jain & Gautam Seth & Arpit Paruthi & Umang Soni & Girish Kumar, 2022. "Synthetic data augmentation for surface defect detection and classification using deep learning," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 1007-1020, April.
    14. Zeqing Yang & Mingxuan Zhang & Yingshu Chen & Ning Hu & Lingxiao Gao & Libing Liu & Enxu Ping & Jung Il Song, 2024. "Surface defect detection method for air rudder based on positive samples," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 95-113, January.
    15. Li Wei & Mahmud Iwan Solihin & Sarah ‘Atifah Saruchi & Winda Astuti & Lim Wei Hong & Ang Chun Kit, 2024. "Surface Defects Detection of Cylindrical High-Precision Industrial Parts Based on Deep Learning Algorithms: A Review," SN Operations Research Forum, Springer, vol. 5(3), pages 1-71, September.
    16. Zichen Bai & Junfeng Jing, 2024. "Mobile-Deeplab: a lightweight pixel segmentation-based method for fabric defect detection," Journal of Intelligent Manufacturing, Springer, vol. 35(7), pages 3315-3330, October.
    17. Shuo Meng & Ruru Pan & Weidong Gao & Jian Zhou & Jingan Wang & Wentao He, 2021. "A multi-task and multi-scale convolutional neural network for automatic recognition of woven fabric pattern," Journal of Intelligent Manufacturing, Springer, vol. 32(4), pages 1147-1161, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haiyong Chen & Yue Pang & Qidi Hu & Kun Liu, 2020. "Solar cell surface defect inspection based on multispectral convolutional neural network," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 453-468, February.
    2. Tae San Kim & Jong Wook Lee & Won Kyung Lee & So Young Sohn, 2022. "Novel method for detection of mixed-type defect patterns in wafer maps based on a single shot detector algorithm," Journal of Intelligent Manufacturing, Springer, vol. 33(6), pages 1715-1724, August.
    3. Mohamed Ben Gharsallah & Ezzedine Ben Braiek, 2021. "Computer aided manufacturing method for surface silicon steel inspection based on an efficient anisotropic diffusion algorithm," Journal of Intelligent Manufacturing, Springer, vol. 32(4), pages 1025-1041, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:31:y:2020:i:3:d:10.1007_s10845-019-01476-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.