IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v34y2023i4d10.1007_s10845-021-01899-5.html
   My bibliography  Save this article

Enhanced Equilibrium Optimizer algorithm applied in job shop scheduling problem

Author

Listed:
  • Ying Sun

    (Shandong University of Science and Technology)

  • Jeng-Shyang Pan

    (Shandong University of Science and Technology
    Chaoyang University of Science and Technology)

  • Pei Hu

    (Shandong University of Science and Technology
    Nanyang Institute of Technology)

  • Shu-Chuan Chu

    (Shandong University of Science and Technology
    Flinders University)

Abstract

The Equilibrium Optimizer (EO) algorithm is a new meta-heuristic algorithm that uses an equilibrium pool and candidates to update particles (solutions). EO algorithm not only has strong exploitation and exploration capabilities but also avoids falling into the local optimum. The reason why EO has these advantages is because of the existence of “generation rate”. This paper proposes an Enhanced Equilibrium Optimizer (EEO) Algorithm based on three communication strategies to solve the Job Shop Scheduling Problem (JSSP). To prove the accuracy of the algorithm, this paper uses 28 benchmark functions for testing. At the same time, the Enhanced Equilibrium Optimizer (EEO1, EEO2, EEO3) Algorithms are compared with the existing optimization methods, including Grey Wolf Optimizer (GWO), Multi-Version Optimizer (MVO), Differential Evolution (DE), Whale Optimization Algorithm (WOA). Experiments show that the EO algorithm is significantly better than GWO, MVO, DE, WOA. EO algorithm is mainly used to optimize continuous problems, but JSSP is a discrete application, so the standard equilibrium optimizer algorithm needs to be discretized. This paper extends the enhanced equilibrium optimizer algorithm and adds discretization processing to JSSP. The algorithm is also applied for the job shop scheduling problem by discretization and is compared with the three improvement methods of EEO. Experimental results prove that the algorithm has made significant improvements in solving JSSP.

Suggested Citation

  • Ying Sun & Jeng-Shyang Pan & Pei Hu & Shu-Chuan Chu, 2023. "Enhanced Equilibrium Optimizer algorithm applied in job shop scheduling problem," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1639-1665, April.
  • Handle: RePEc:spr:joinma:v:34:y:2023:i:4:d:10.1007_s10845-021-01899-5
    DOI: 10.1007/s10845-021-01899-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-021-01899-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-021-01899-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter J. M. van Laarhoven & Emile H. L. Aarts & Jan Karel Lenstra, 1992. "Job Shop Scheduling by Simulated Annealing," Operations Research, INFORMS, vol. 40(1), pages 113-125, February.
    2. Jianhui Mou & Xinyu Li & Liang Gao & Wenchao Yi, 2018. "An effective L-MONG algorithm for solving multi-objective flow-shop inverse scheduling problems," Journal of Intelligent Manufacturing, Springer, vol. 29(4), pages 789-807, April.
    3. Thi-Kien Dao & Tien-Szu Pan & Trong-The Nguyen & Jeng-Shyang Pan, 2018. "Parallel bat algorithm for optimizing makespan in job shop scheduling problems," Journal of Intelligent Manufacturing, Springer, vol. 29(2), pages 451-462, February.
    4. Boxuan Zhao & Jianmin Gao & Kun Chen & Ke Guo, 2018. "Two-generation Pareto ant colony algorithm for multi-objective job shop scheduling problem with alternative process plans and unrelated parallel machines," Journal of Intelligent Manufacturing, Springer, vol. 29(1), pages 93-108, January.
    5. Jian Zhang & Guofu Ding & Yisheng Zou & Shengfeng Qin & Jianlin Fu, 2019. "Review of job shop scheduling research and its new perspectives under Industry 4.0," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1809-1830, April.
    6. Joseph Adams & Egon Balas & Daniel Zawack, 1988. "The Shifting Bottleneck Procedure for Job Shop Scheduling," Management Science, INFORMS, vol. 34(3), pages 391-401, March.
    7. Marcelo Seido Nagano & Adriano Seiko Komesu & Hugo Hissashi Miyata, 2019. "An evolutionary clustering search for the total tardiness blocking flow shop problem," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1843-1857, April.
    8. Maroua Nouiri & Abdelghani Bekrar & Abderezak Jemai & Smail Niar & Ahmed Chiheb Ammari, 2018. "An effective and distributed particle swarm optimization algorithm for flexible job-shop scheduling problem," Journal of Intelligent Manufacturing, Springer, vol. 29(3), pages 603-615, March.
    9. Choo Jun Tan & Siew Chin Neoh & Chee Peng Lim & Samer Hanoun & Wai Peng Wong & Chu Kong Loo & Li Zhang & Saeid Nahavandi, 2019. "Application of an evolutionary algorithm-based ensemble model to job-shop scheduling," Journal of Intelligent Manufacturing, Springer, vol. 30(2), pages 879-890, February.
    10. Ahmadian, Mohammad Mahdi & Salehipour, Amir & Cheng, T.C.E., 2021. "A meta-heuristic to solve the just-in-time job-shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 288(1), pages 14-29.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shahed Mahmud & Ripon K. Chakrabortty & Alireza Abbasi & Michael J. Ryan, 2022. "Switching strategy-based hybrid evolutionary algorithms for job shop scheduling problems," Journal of Intelligent Manufacturing, Springer, vol. 33(7), pages 1939-1966, October.
    2. Yiyi Xu & M’hammed Sahnoun & Fouad Ben Abdelaziz & David Baudry, 2022. "A simulated multi-objective model for flexible job shop transportation scheduling," Annals of Operations Research, Springer, vol. 311(2), pages 899-920, April.
    3. Tao Ren & Yan Zhang & Shuenn-Ren Cheng & Chin-Chia Wu & Meng Zhang & Bo-yu Chang & Xin-yue Wang & Peng Zhao, 2020. "Effective Heuristic Algorithms Solving the Jobshop Scheduling Problem with Release Dates," Mathematics, MDPI, vol. 8(8), pages 1-25, July.
    4. Meloni, Carlo & Pranzo, Marco & Samà, Marcella, 2022. "Evaluation of VaR and CVaR for the makespan in interval valued blocking job shops," International Journal of Production Economics, Elsevier, vol. 247(C).
    5. Edzard Weber & Anselm Tiefenbacher & Norbert Gronau, 2019. "Need for Standardization and Systematization of Test Data for Job-Shop Scheduling," Data, MDPI, vol. 4(1), pages 1-21, February.
    6. Selcuk Goren & Ihsan Sabuncuoglu & Utku Koc, 2012. "Optimization of schedule stability and efficiency under processing time variability and random machine breakdowns in a job shop environment," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(1), pages 26-38, February.
    7. Bürgy, Reinhard & Bülbül, Kerem, 2018. "The job shop scheduling problem with convex costs," European Journal of Operational Research, Elsevier, vol. 268(1), pages 82-100.
    8. G I Zobolas & C D Tarantilis & G Ioannou, 2009. "A hybrid evolutionary algorithm for the job shop scheduling problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(2), pages 221-235, February.
    9. Gabriel Mauricio Zambrano-Rey & Eliana María González-Neira & Gabriel Fernando Forero-Ortiz & María José Ocampo-Monsalve & Andrea Rivera-Torres, 2024. "Minimizing the expected maximum lateness for a job shop subject to stochastic machine breakdowns," Annals of Operations Research, Springer, vol. 338(1), pages 801-833, July.
    10. Arash Amirteimoori & Reza Kia, 2023. "Concurrent scheduling of jobs and AGVs in a flexible job shop system: a parallel hybrid PSO-GA meta-heuristic," Flexible Services and Manufacturing Journal, Springer, vol. 35(3), pages 727-753, September.
    11. Z C Zhu & K M Ng & H L Ong, 2010. "A modified tabu search algorithm for cost-based job shop problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(4), pages 611-619, April.
    12. F. Guerriero, 2008. "Hybrid Rollout Approaches for the Job Shop Scheduling Problem," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 419-438, November.
    13. Da Col, Giacomo & Teppan, Erich C., 2022. "Industrial-size job shop scheduling with constraint programming," Operations Research Perspectives, Elsevier, vol. 9(C).
    14. Gregory A. Kasapidis & Dimitris C. Paraskevopoulos & Panagiotis P. Repoussis & Christos D. Tarantilis, 2021. "Flexible Job Shop Scheduling Problems with Arbitrary Precedence Graphs," Production and Operations Management, Production and Operations Management Society, vol. 30(11), pages 4044-4068, November.
    15. Raja Awais Liaqait & Shermeen Hamid & Salman Sagheer Warsi & Azfar Khalid, 2021. "A Critical Analysis of Job Shop Scheduling in Context of Industry 4.0," Sustainability, MDPI, vol. 13(14), pages 1-19, July.
    16. T. C. E. Cheng & Bo Peng & Zhipeng Lü, 2016. "A hybrid evolutionary algorithm to solve the job shop scheduling problem," Annals of Operations Research, Springer, vol. 242(2), pages 223-237, July.
    17. Ramesh Bollapragada & Norman M. Sadeh, 2004. "Proactive release procedures for just‐in‐time job shop environments, subject to machine failures," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(7), pages 1018-1044, October.
    18. P Corry & E Kozan, 2004. "Job scheduling with technical constraints," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(2), pages 160-169, February.
    19. Yuanfei Wei & Zalinda Othman & Kauthar Mohd Daud & Shihong Yin & Qifang Luo & Yongquan Zhou, 2022. "Equilibrium Optimizer and Slime Mould Algorithm with Variable Neighborhood Search for Job Shop Scheduling Problem," Mathematics, MDPI, vol. 10(21), pages 1-20, November.
    20. Hoksung Yau & Leyuan Shi, 2009. "Nested partitions for the large-scale extended job shop scheduling problem," Annals of Operations Research, Springer, vol. 168(1), pages 23-39, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:34:y:2023:i:4:d:10.1007_s10845-021-01899-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.