IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v30y2019i2d10.1007_s10845-016-1291-1.html
   My bibliography  Save this article

Application of an evolutionary algorithm-based ensemble model to job-shop scheduling

Author

Listed:
  • Choo Jun Tan

    (Wawasan Open University)

  • Siew Chin Neoh

    (UCSI University)

  • Chee Peng Lim

    (Deakin University)

  • Samer Hanoun

    (Deakin University)

  • Wai Peng Wong

    (University Science of Malaysia)

  • Chu Kong Loo

    (University of Malaya)

  • Li Zhang

    (Northumbria University)

  • Saeid Nahavandi

    (Deakin University)

Abstract

In this paper, a novel evolutionary algorithm is applied to tackle job-shop scheduling tasks in manufacturing environments. Specifically, a modified micro genetic algorithm (MmGA) is used as the building block to formulate an ensemble model to undertake multi-objective optimisation problems in job-shop scheduling. The MmGA ensemble is able to approximate the optimal solution under the Pareto optimality principle. To evaluate the effectiveness of the MmGA ensemble, a case study based on real requirements is conducted. The results positively indicate the effectiveness of the MmGA ensemble in undertaking job-shop scheduling problems.

Suggested Citation

  • Choo Jun Tan & Siew Chin Neoh & Chee Peng Lim & Samer Hanoun & Wai Peng Wong & Chu Kong Loo & Li Zhang & Saeid Nahavandi, 2019. "Application of an evolutionary algorithm-based ensemble model to job-shop scheduling," Journal of Intelligent Manufacturing, Springer, vol. 30(2), pages 879-890, February.
  • Handle: RePEc:spr:joinma:v:30:y:2019:i:2:d:10.1007_s10845-016-1291-1
    DOI: 10.1007/s10845-016-1291-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-016-1291-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-016-1291-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Prot, D. & Bellenguez-Morineau, O. & Lahlou, C., 2013. "New complexity results for parallel identical machine scheduling problems with preemption, release dates and regular criteria," European Journal of Operational Research, Elsevier, vol. 231(2), pages 282-287.
    2. Homa Amirian & Rashed Sahraeian, 2015. "Augmented ε-constraint method in multi-objective flowshop problem with past sequence set-up times and a modified learning effect," International Journal of Production Research, Taylor & Francis Journals, vol. 53(19), pages 5962-5976, October.
    3. Wilson, Duncan T. & Hawe, Glenn I. & Coates, Graham & Crouch, Roger S., 2013. "A multi-objective combinatorial model of casualty processing in major incident response," European Journal of Operational Research, Elsevier, vol. 230(3), pages 643-655.
    4. Tapan Sen & Farhad M. E. Raiszadeh & Parthasarati Dileepan, 1988. "Note---A Branch-and-Bound Approach to the Bicriterion Scheduling Problem Involving Total Flowtime and Range of Lateness," Management Science, INFORMS, vol. 34(2), pages 254-260, February.
    5. Chiang, Tsung-Che & Lin, Hsiao-Jou, 2013. "A simple and effective evolutionary algorithm for multiobjective flexible job shop scheduling," International Journal of Production Economics, Elsevier, vol. 141(1), pages 87-98.
    6. Anurag Tiwari & Pei-Chann Chang & M.K. Tiwari & Nevin John Kollanoor, 2015. "A Pareto block-based estimation and distribution algorithm for multi-objective permutation flow shop scheduling problem," International Journal of Production Research, Taylor & Francis Journals, vol. 53(3), pages 793-834, February.
    7. Eugen Lounkine & Michael J. Keiser & Steven Whitebread & Dmitri Mikhailov & Jacques Hamon & Jeremy L. Jenkins & Paul Lavan & Eckhard Weber & Allison K. Doak & Serge Côté & Brian K. Shoichet & Laszlo U, 2012. "Large-scale prediction and testing of drug activity on side-effect targets," Nature, Nature, vol. 486(7403), pages 361-367, June.
    8. Xiong, Jian & Xing, Li-ning & Chen, Ying-wu, 2013. "Robust scheduling for multi-objective flexible job-shop problems with random machine breakdowns," International Journal of Production Economics, Elsevier, vol. 141(1), pages 112-126.
    9. Van Wassenhove, L. & Gelders, L., 1978. "Four solution techniques for a general one machine scheduling problem : A comparative study," European Journal of Operational Research, Elsevier, vol. 2(4), pages 281-290, July.
    10. Nagar, Amit & Haddock, Jorge & Heragu, Sunderesh, 1995. "Multiple and bicriteria scheduling: A literature survey," European Journal of Operational Research, Elsevier, vol. 81(1), pages 88-104, February.
    11. Chen, Shih-Hsin & Chen, Min-Chih, 2013. "Addressing the advantages of using ensemble probabilistic models in Estimation of Distribution Algorithms for scheduling problems," International Journal of Production Economics, Elsevier, vol. 141(1), pages 24-33.
    12. Jérémy Besnard & Gian Filippo Ruda & Vincent Setola & Keren Abecassis & Ramona M. Rodriguiz & Xi-Ping Huang & Suzanne Norval & Maria F. Sassano & Antony I. Shin & Lauren A. Webster & Frederick R. C. S, 2012. "Automated design of ligands to polypharmacological profiles," Nature, Nature, vol. 492(7428), pages 215-220, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lenin Nagarajan & Siva Kumar Mahalingam & Jayakrishna Kandasamy & Selvakumar Gurusamy, 2022. "A novel approach in selective assembly with an arbitrary distribution to minimize clearance variation using evolutionary algorithms: a comparative study," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1337-1354, June.
    2. Yanwei Sang & Jianping Tan, 2022. "Many-Objective Flexible Job Shop Scheduling Problem with Green Consideration," Energies, MDPI, vol. 15(5), pages 1-17, March.
    3. Ying Sun & Jeng-Shyang Pan & Pei Hu & Shu-Chuan Chu, 2023. "Enhanced Equilibrium Optimizer algorithm applied in job shop scheduling problem," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1639-1665, April.
    4. Konstantinos S. Boulas & Georgios D. Dounias & Chrissoleon T. Papadopoulos, 2023. "A hybrid evolutionary algorithm approach for estimating the throughput of short reliable approximately balanced production lines," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 823-852, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nagar, Amit & Haddock, Jorge & Heragu, Sunderesh, 1995. "Multiple and bicriteria scheduling: A literature survey," European Journal of Operational Research, Elsevier, vol. 81(1), pages 88-104, February.
    2. Alejandro Vital-Soto & Mohammed Fazle Baki & Ahmed Azab, 2023. "A multi-objective mathematical model and evolutionary algorithm for the dual-resource flexible job-shop scheduling problem with sequencing flexibility," Flexible Services and Manufacturing Journal, Springer, vol. 35(3), pages 626-668, September.
    3. Alper Türkyılmaz & Özlem Şenvar & İrem Ünal & Serol Bulkan, 2020. "A research survey: heuristic approaches for solving multi objective flexible job shop problems," Journal of Intelligent Manufacturing, Springer, vol. 31(8), pages 1949-1983, December.
    4. Li, Xinyu & Gao, Liang, 2016. "An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem," International Journal of Production Economics, Elsevier, vol. 174(C), pages 93-110.
    5. Kumar, V.N.S.A. & Kumar, V. & Brady, M. & Garza-Reyes, Jose Arturo & Simpson, M., 2017. "Resolving forward-reverse logistics multi-period model using evolutionary algorithms," International Journal of Production Economics, Elsevier, vol. 183(PB), pages 458-469.
    6. Xiong, Jian & Leus, Roel & Yang, Zhenyu & Abbass, Hussein A., 2016. "Evolutionary multi-objective resource allocation and scheduling in the Chinese navigation satellite system project," European Journal of Operational Research, Elsevier, vol. 251(2), pages 662-675.
    7. Mosheiov, Gur, 2005. "Minimizing total completion time and total deviation of job completion times from a restrictive due-date," European Journal of Operational Research, Elsevier, vol. 165(1), pages 20-33, August.
    8. Derya Deliktaş, 2022. "Self-adaptive memetic algorithms for multi-objective single machine learning-effect scheduling problems with release times," Flexible Services and Manufacturing Journal, Springer, vol. 34(3), pages 748-784, September.
    9. Bai, Danyu & Tang, Mengqian & Zhang, Zhi-Hai & Santibanez-Gonzalez, Ernesto DR, 2018. "Flow shop learning effect scheduling problem with release dates," Omega, Elsevier, vol. 78(C), pages 21-38.
    10. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    11. Ganesan, Viswanath Kumar & Sivakumar, Appa Iyer, 2006. "Scheduling in static jobshops for minimizing mean flowtime subject to minimum total deviation of job completion times," International Journal of Production Economics, Elsevier, vol. 103(2), pages 633-647, October.
    12. Shichang Xiao & Zigao Wu & Hongyan Dui, 2022. "Resilience-Based Surrogate Robustness Measure and Optimization Method for Robust Job-Shop Scheduling," Mathematics, MDPI, vol. 10(21), pages 1-22, October.
    13. Rezapour, Shabnam & Naderi, Nazanin & Morshedlou, Nazanin & Rezapourbehnagh, Shaghayegh, 2018. "Optimal deployment of emergency resources in sudden onset disasters," International Journal of Production Economics, Elsevier, vol. 204(C), pages 365-382.
    14. Taejong Joo & Hyunyoung Jun & Dongmin Shin, 2022. "Task Allocation in Human–Machine Manufacturing Systems Using Deep Reinforcement Learning," Sustainability, MDPI, vol. 14(4), pages 1-18, February.
    15. Xiang Chu & QiuYan Zhong, 2015. "Post-earthquake allocation approach of medical rescue teams," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1809-1824, December.
    16. Shuwan Zhu & Wenjuan Fan & Xueping Li & Shanlin Yang, 2023. "Ambulance dispatching and operating room scheduling considering reusable resources in mass-casualty incidents," Operational Research, Springer, vol. 23(2), pages 1-37, June.
    17. P Chen & C-C Wu & W-C Lee, 2006. "A bi-criteria two-machine flowshop scheduling problem with a learning effect," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(9), pages 1113-1125, September.
    18. Miguel A. Ortíz & Leidy E. Betancourt & Kevin Parra Negrete & Fabio Felice & Antonella Petrillo, 2018. "Dispatching algorithm for production programming of flexible job-shop systems in the smart factory industry," Annals of Operations Research, Springer, vol. 264(1), pages 409-433, May.
    19. Dhaenens-Flipo, Clarisse, 2001. "A bicriterion approach to deal with a constrained single-objective problem," International Journal of Production Economics, Elsevier, vol. 74(1-3), pages 93-101, December.
    20. Vitayasak, Srisatja & Pongcharoen, Pupong & Hicks, Chris, 2017. "A tool for solving stochastic dynamic facility layout problems with stochastic demand using either a Genetic Algorithm or modified Backtracking Search Algorithm," International Journal of Production Economics, Elsevier, vol. 190(C), pages 146-157.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:30:y:2019:i:2:d:10.1007_s10845-016-1291-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.