IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v338y2024i1d10.1007_s10479-023-05592-z.html
   My bibliography  Save this article

Minimizing the expected maximum lateness for a job shop subject to stochastic machine breakdowns

Author

Listed:
  • Gabriel Mauricio Zambrano-Rey

    (Pontificia Universidad Javeriana)

  • Eliana María González-Neira

    (Pontificia Universidad Javeriana)

  • Gabriel Fernando Forero-Ortiz

    (Pontificia Universidad Javeriana)

  • María José Ocampo-Monsalve

    (Pontificia Universidad Javeriana)

  • Andrea Rivera-Torres

    (Pontificia Universidad Javeriana)

Abstract

This paper addresses a stochastic job shop scheduling problem with sequence-dependent setup times, aiming to minimize the expected maximum lateness. The stochastic nature is modeled by considering uncertain times between failures (TBF) and uncertain times to repair (TTR). To tackle this problem, a simheuristic approach is proposed, which combines a tabu search (TS) algorithm with Monte Carlo simulation. A total of 320 instances were used to conduct multiple experiments. Instances were generated with two distributions to study the behavior of stochastic TTR and TBF under log-normal and exponential distributions. Firstly, the performance of the simheuristic was evaluated for small instances by comparing it with the simulation of optimal solutions obtained with a mixed-integer linear programming (MILP) model. The simheuristic approach demonstrated an average improvement of around 7% compared to the simulation of MILP model solutions. Secondly, the simheuristic performance was evaluated for medium and large-size instances by comparing it with the simulation of the solutions obtained by the earliest due date (EDD) and process time plus work in the next queue plus negative slack (PT + WINQ + SL) dispatching rules. The results showed an average improvement of around 11% compared to EDD and 14% compared to PT + WINQ + SL. Furthermore, the results highlight that even when the two distributions have the same expected value and coefficient of variation, they can yield different expected maximum lateness values. This emphasizes the importance of precise distribution fitting when solving real cases to achieve effective scheduling performance.

Suggested Citation

  • Gabriel Mauricio Zambrano-Rey & Eliana María González-Neira & Gabriel Fernando Forero-Ortiz & María José Ocampo-Monsalve & Andrea Rivera-Torres, 2024. "Minimizing the expected maximum lateness for a job shop subject to stochastic machine breakdowns," Annals of Operations Research, Springer, vol. 338(1), pages 801-833, July.
  • Handle: RePEc:spr:annopr:v:338:y:2024:i:1:d:10.1007_s10479-023-05592-z
    DOI: 10.1007/s10479-023-05592-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-023-05592-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-023-05592-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jesica Armas & Angel A. Juan & Joan M. Marquès & João Pedro Pedroso, 2017. "Solving the deterministic and stochastic uncapacitated facility location problem: from a heuristic to a simheuristic," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(10), pages 1161-1176, October.
    2. Bierwirth, C. & Kuhpfahl, J., 2017. "Extended GRASP for the job shop scheduling problem with total weighted tardiness objective," European Journal of Operational Research, Elsevier, vol. 261(3), pages 835-848.
    3. Juan, Angel A. & Faulin, Javier & Grasman, Scott E. & Rabe, Markus & Figueira, Gonçalo, 2015. "A review of simheuristics: Extending metaheuristics to deal with stochastic combinatorial optimization problems," Operations Research Perspectives, Elsevier, vol. 2(C), pages 62-72.
    4. T. C. E. Cheng & Bo Peng & Zhipeng Lü, 2016. "A hybrid evolutionary algorithm to solve the job shop scheduling problem," Annals of Operations Research, Springer, vol. 242(2), pages 223-237, July.
    5. B. P. Banerjee, 1965. "Single Facility Sequencing with Random Execution Times," Operations Research, INFORMS, vol. 13(3), pages 358-364, June.
    6. Jin Xie & Xinyu Li & Liang Gao & Lin Gui, 2023. "A new neighbourhood structure for job shop scheduling problems," International Journal of Production Research, Taylor & Francis Journals, vol. 61(7), pages 2147-2161, April.
    7. James R. Jackson, 1956. "An extension of Johnson's results on job IDT scheduling," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 3(3), pages 201-203, September.
    8. Sheldon B. Akers & Joyce Friedman, 1955. "A Non-Numerical Approach to Production Scheduling Problems," Operations Research, INFORMS, vol. 3(4), pages 429-442, November.
    9. Sanja Petrovic & Carole Fayad & Dobrila Petrovic & Edmund Burke & Graham Kendall, 2008. "Fuzzy job shop scheduling with lot-sizing," Annals of Operations Research, Springer, vol. 159(1), pages 275-292, March.
    10. Wayne E. Smith, 1956. "Various optimizers for single‐stage production," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 3(1‐2), pages 59-66, March.
    11. Carlo Meloni & Dario Pacciarelli & Marco Pranzo, 2004. "A Rollout Metaheuristic for Job Shop Scheduling Problems," Annals of Operations Research, Springer, vol. 131(1), pages 215-235, October.
    12. Jian Zhang & Guofu Ding & Yisheng Zou & Shengfeng Qin & Jianlin Fu, 2019. "Review of job shop scheduling research and its new perspectives under Industry 4.0," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1809-1830, April.
    13. Joseph Adams & Egon Balas & Daniel Zawack, 1988. "The Shifting Bottleneck Procedure for Job Shop Scheduling," Management Science, INFORMS, vol. 34(3), pages 391-401, March.
    14. Jain, A. S. & Meeran, S., 1999. "Deterministic job-shop scheduling: Past, present and future," European Journal of Operational Research, Elsevier, vol. 113(2), pages 390-434, March.
    15. Gmys, Jan & Mezmaz, Mohand & Melab, Nouredine & Tuyttens, Daniel, 2020. "A computationally efficient Branch-and-Bound algorithm for the permutation flow-shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 284(3), pages 814-833.
    16. Marco Pranzo & Dario Pacciarelli, 2016. "An iterated greedy metaheuristic for the blocking job shop scheduling problem," Journal of Heuristics, Springer, vol. 22(4), pages 587-611, August.
    17. Fernandez-Viagas, Victor & Ruiz, Rubén & Framinan, Jose M., 2017. "A new vision of approximate methods for the permutation flowshop to minimise makespan: State-of-the-art and computational evaluation," European Journal of Operational Research, Elsevier, vol. 257(3), pages 707-721.
    18. Al-Hinai, Nasr & ElMekkawy, T.Y., 2011. "Robust and stable flexible job shop scheduling with random machine breakdowns using a hybrid genetic algorithm," International Journal of Production Economics, Elsevier, vol. 132(2), pages 279-291, August.
    19. Pu-Hai Chiang & Chau-Chen Torng, 2016. "A production planning and optimisation of multi-mode job shop scheduling problem for an avionics manufacturing plant," International Journal of Manufacturing Technology and Management, Inderscience Enterprises Ltd, vol. 30(3/4), pages 179-195.
    20. S. M. Johnson, 1954. "Optimal two‐ and three‐stage production schedules with setup times included," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 1(1), pages 61-68, March.
    21. Vinod, V. & Sridharan, R., 2011. "Simulation modeling and analysis of due-date assignment methods and scheduling decision rules in a dynamic job shop production system," International Journal of Production Economics, Elsevier, vol. 129(1), pages 127-146, January.
    22. Xinchang Hao & Mitsuo Gen & Lin Lin & Gursel A. Suer, 2017. "Effective multiobjective EDA for bi-criteria stochastic job-shop scheduling problem," Journal of Intelligent Manufacturing, Springer, vol. 28(3), pages 833-845, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tao Ren & Yan Zhang & Shuenn-Ren Cheng & Chin-Chia Wu & Meng Zhang & Bo-yu Chang & Xin-yue Wang & Peng Zhao, 2020. "Effective Heuristic Algorithms Solving the Jobshop Scheduling Problem with Release Dates," Mathematics, MDPI, vol. 8(8), pages 1-25, July.
    2. Meloni, Carlo & Pranzo, Marco & Samà, Marcella, 2022. "Evaluation of VaR and CVaR for the makespan in interval valued blocking job shops," International Journal of Production Economics, Elsevier, vol. 247(C).
    3. Bürgy, Reinhard & Bülbül, Kerem, 2018. "The job shop scheduling problem with convex costs," European Journal of Operational Research, Elsevier, vol. 268(1), pages 82-100.
    4. Zhang, Rui & Song, Shiji & Wu, Cheng, 2013. "A hybrid artificial bee colony algorithm for the job shop scheduling problem," International Journal of Production Economics, Elsevier, vol. 141(1), pages 167-178.
    5. Christophe Sauvey & Wajdi Trabelsi & Nathalie Sauer, 2020. "Mathematical Model and Evaluation Function for Conflict-Free Warranted Makespan Minimization of Mixed Blocking Constraint Job-Shop Problems," Mathematics, MDPI, vol. 8(1), pages 1-17, January.
    6. Shahed Mahmud & Ripon K. Chakrabortty & Alireza Abbasi & Michael J. Ryan, 2022. "Switching strategy-based hybrid evolutionary algorithms for job shop scheduling problems," Journal of Intelligent Manufacturing, Springer, vol. 33(7), pages 1939-1966, October.
    7. Elisa Negri & Vibhor Pandhare & Laura Cattaneo & Jaskaran Singh & Marco Macchi & Jay Lee, 2021. "Field-synchronized Digital Twin framework for production scheduling with uncertainty," Journal of Intelligent Manufacturing, Springer, vol. 32(4), pages 1207-1228, April.
    8. Raja Awais Liaqait & Shermeen Hamid & Salman Sagheer Warsi & Azfar Khalid, 2021. "A Critical Analysis of Job Shop Scheduling in Context of Industry 4.0," Sustainability, MDPI, vol. 13(14), pages 1-19, July.
    9. Mogali, Jayanth Krishna & Barbulescu, Laura & Smith, Stephen F., 2021. "Efficient primal heuristic updates for the blocking job shop problem," European Journal of Operational Research, Elsevier, vol. 295(1), pages 82-101.
    10. Sels, Veronique & Craeymeersch, Kjeld & Vanhoucke, Mario, 2011. "A hybrid single and dual population search procedure for the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 215(3), pages 512-523, December.
    11. Jacomine Grobler & Andries Engelbrecht & Schalk Kok & Sarma Yadavalli, 2010. "Metaheuristics for the multi-objective FJSP with sequence-dependent set-up times, auxiliary resources and machine down time," Annals of Operations Research, Springer, vol. 180(1), pages 165-196, November.
    12. Ganesan, Viswanath Kumar & Sivakumar, Appa Iyer, 2006. "Scheduling in static jobshops for minimizing mean flowtime subject to minimum total deviation of job completion times," International Journal of Production Economics, Elsevier, vol. 103(2), pages 633-647, October.
    13. Zigao Wu & Shaohua Yu & Tiancheng Li, 2019. "A Meta-Model-Based Multi-Objective Evolutionary Approach to Robust Job Shop Scheduling," Mathematics, MDPI, vol. 7(6), pages 1-19, June.
    14. Miri Gilenson & Dvir Shabtay & Liron Yedidsion & Rohit Malshe, 2021. "Scheduling in multi-scenario environment with an agreeable condition on job processing times," Annals of Operations Research, Springer, vol. 307(1), pages 153-173, December.
    15. Monaci, Marta & Agasucci, Valerio & Grani, Giorgio, 2024. "An actor-critic algorithm with policy gradients to solve the job shop scheduling problem using deep double recurrent agents," European Journal of Operational Research, Elsevier, vol. 312(3), pages 910-926.
    16. Mohamed Habib Zahmani & Baghdad Atmani, 2021. "Multiple dispatching rules allocation in real time using data mining, genetic algorithms, and simulation," Journal of Scheduling, Springer, vol. 24(2), pages 175-196, April.
    17. El-Bouri, A. & Azizi, N. & Zolfaghari, S., 2007. "A comparative study of a new heuristic based on adaptive memory programming and simulated annealing: The case of job shop scheduling," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1894-1910, March.
    18. F. Guerriero, 2008. "Hybrid Rollout Approaches for the Job Shop Scheduling Problem," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 419-438, November.
    19. Gregory A. Kasapidis & Dimitris C. Paraskevopoulos & Panagiotis P. Repoussis & Christos D. Tarantilis, 2021. "Flexible Job Shop Scheduling Problems with Arbitrary Precedence Graphs," Production and Operations Management, Production and Operations Management Society, vol. 30(11), pages 4044-4068, November.
    20. Yiyi Xu & M’hammed Sahnoun & Fouad Ben Abdelaziz & David Baudry, 2022. "A simulated multi-objective model for flexible job shop transportation scheduling," Annals of Operations Research, Springer, vol. 311(2), pages 899-920, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:338:y:2024:i:1:d:10.1007_s10479-023-05592-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.