IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v55y2004i2d10.1057_palgrave.jors.2601673.html
   My bibliography  Save this article

Job scheduling with technical constraints

Author

Listed:
  • P Corry

    (Queensland University of Technology)

  • E Kozan

    (Queensland University of Technology)

Abstract

Many scheduling problems that arise in industry have technical constraints unique to the specific industry. Scheduling methodologies must be highly customized to deal with the unique technical constraints. This study proposes a scheduling model that can incorporate technical constraints into standard scheduling constraints already present in classical models. Using this approach, technical constraints from one industry can be interchanged with those from another with little modification to the existing methodologies. The conditions under which this approach can be applied are investigated and frameworks for applying dispatching rules are proposed. Numerical experiments evaluate the performance of these dispatching rules and compare them with two meta-heuristics.

Suggested Citation

  • P Corry & E Kozan, 2004. "Job scheduling with technical constraints," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(2), pages 160-169, February.
  • Handle: RePEc:pal:jorsoc:v:55:y:2004:i:2:d:10.1057_palgrave.jors.2601673
    DOI: 10.1057/palgrave.jors.2601673
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/palgrave.jors.2601673
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/palgrave.jors.2601673?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter J. M. van Laarhoven & Emile H. L. Aarts & Jan Karel Lenstra, 1992. "Job Shop Scheduling by Simulated Annealing," Operations Research, INFORMS, vol. 40(1), pages 113-125, February.
    2. Ramudhin, Amar & Marier, Philippe, 1996. "The generalized Shifting Bottleneck Procedure," European Journal of Operational Research, Elsevier, vol. 93(1), pages 34-48, August.
    3. Joseph Adams & Egon Balas & Daniel Zawack, 1988. "The Shifting Bottleneck Procedure for Job Shop Scheduling," Management Science, INFORMS, vol. 34(3), pages 391-401, March.
    4. Holthaus, Oliver & Rajendran, Chandrasekharan, 1997. "Efficient dispatching rules for scheduling in a job shop," International Journal of Production Economics, Elsevier, vol. 48(1), pages 87-105, January.
    5. Eugeniusz Nowicki & Czeslaw Smutnicki, 1996. "A Fast Taboo Search Algorithm for the Job Shop Problem," Management Science, INFORMS, vol. 42(6), pages 797-813, June.
    6. Ivens, Philip & Lambrecht, Marc, 1996. "Extending the shifting bottleneck procedure to real-life applications," European Journal of Operational Research, Elsevier, vol. 90(2), pages 252-268, April.
    7. Amaral Armentano, Vinicius & Rigao Scrich, Cintia, 2000. "Tabu search for minimizing total tardiness in a job shop," International Journal of Production Economics, Elsevier, vol. 63(2), pages 131-140, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Burdett, R.L. & Kozan, E., 2010. "A disjunctive graph model and framework for constructing new train schedules," European Journal of Operational Research, Elsevier, vol. 200(1), pages 85-98, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jain, A. S. & Meeran, S., 1999. "Deterministic job-shop scheduling: Past, present and future," European Journal of Operational Research, Elsevier, vol. 113(2), pages 390-434, March.
    2. Bierwirth, C. & Kuhpfahl, J., 2017. "Extended GRASP for the job shop scheduling problem with total weighted tardiness objective," European Journal of Operational Research, Elsevier, vol. 261(3), pages 835-848.
    3. Edzard Weber & Anselm Tiefenbacher & Norbert Gronau, 2019. "Need for Standardization and Systematization of Test Data for Job-Shop Scheduling," Data, MDPI, vol. 4(1), pages 1-21, February.
    4. Rego, César & Duarte, Renato, 2009. "A filter-and-fan approach to the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 194(3), pages 650-662, May.
    5. Bürgy, Reinhard & Bülbül, Kerem, 2018. "The job shop scheduling problem with convex costs," European Journal of Operational Research, Elsevier, vol. 268(1), pages 82-100.
    6. G I Zobolas & C D Tarantilis & G Ioannou, 2009. "A hybrid evolutionary algorithm for the job shop scheduling problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(2), pages 221-235, February.
    7. Z C Zhu & K M Ng & H L Ong, 2010. "A modified tabu search algorithm for cost-based job shop problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(4), pages 611-619, April.
    8. F. Guerriero, 2008. "Hybrid Rollout Approaches for the Job Shop Scheduling Problem," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 419-438, November.
    9. Da Col, Giacomo & Teppan, Erich C., 2022. "Industrial-size job shop scheduling with constraint programming," Operations Research Perspectives, Elsevier, vol. 9(C).
    10. T. C. E. Cheng & Bo Peng & Zhipeng Lü, 2016. "A hybrid evolutionary algorithm to solve the job shop scheduling problem," Annals of Operations Research, Springer, vol. 242(2), pages 223-237, July.
    11. Dauzère-Pérès, Stéphane & Ding, Junwen & Shen, Liji & Tamssaouet, Karim, 2024. "The flexible job shop scheduling problem: A review," European Journal of Operational Research, Elsevier, vol. 314(2), pages 409-432.
    12. Rossi, Andrea, 2014. "Flexible job shop scheduling with sequence-dependent setup and transportation times by ant colony with reinforced pheromone relationships," International Journal of Production Economics, Elsevier, vol. 153(C), pages 253-267.
    13. Buscher, Udo & Shen, Liji, 2009. "An integrated tabu search algorithm for the lot streaming problem in job shops," European Journal of Operational Research, Elsevier, vol. 199(2), pages 385-399, December.
    14. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    15. Karen Aardal & Cor Hurkens & Jan Karel Lenstra & Sergey Tiourine, 2002. "Algorithms for Radio Link Frequency Assignment: The Calma Project," Operations Research, INFORMS, vol. 50(6), pages 968-980, December.
    16. Ansis Ozolins, 2020. "Bounded dynamic programming algorithm for the job shop problem with sequence dependent setup times," Operational Research, Springer, vol. 20(3), pages 1701-1728, September.
    17. Philippe Lacomme & Aziz Moukrim & Alain Quilliot & Marina Vinot, 2019. "Integration of routing into a resource-constrained project scheduling problem," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 7(4), pages 421-464, December.
    18. Liaw, Ching-Fang, 2000. "A hybrid genetic algorithm for the open shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 124(1), pages 28-42, July.
    19. Selcuk Goren & Ihsan Sabuncuoglu & Utku Koc, 2012. "Optimization of schedule stability and efficiency under processing time variability and random machine breakdowns in a job shop environment," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(1), pages 26-38, February.
    20. Zoghby, Jeriad & Wesley Barnes, J. & Hasenbein, John J., 2005. "Modeling the reentrant job shop scheduling problem with setups for metaheuristic searches," European Journal of Operational Research, Elsevier, vol. 167(2), pages 336-348, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:55:y:2004:i:2:d:10.1057_palgrave.jors.2601673. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.