IDEAS home Printed from https://ideas.repec.org/a/eee/oprepe/v9y2022ics2214716022000215.html
   My bibliography  Save this article

Industrial-size job shop scheduling with constraint programming

Author

Listed:
  • Da Col, Giacomo
  • Teppan, Erich C.

Abstract

The job shop scheduling problem is one of the most studied optimization problems to this day and it becomes more and more important in the light of the fourth industrial revolution (Industry 4.0) that aims at fully automated production processes. For a long time exact methods like constraint programming had problems to solve real large-scale problem instances and methods of choice were to be found in the area of (meta-) heuristics. However, developments during the last decade improved the performance of state-of-the-art constraint solvers dramatically, to the point that they can be applied also on large-scale instances. The presented work’s main target is to elaborate the performance of state-of-the-art constraint solvers with respect to industrial-size job shop scheduling problem instances. To this end, we analyze and compare the performance of two cutting-edge constraint solvers: OR-Tools, an open-source solver developed by Google and recurrent winner of the MiniZinc Challenge, and CP Optimizer, a proprietary constraint solver from IBM targeted at industrial optimization problems. In order to reflect real-world industrial scenarios with heavy workloads like found in the semi-conductor domain, we use novel benchmarks that comprise up to one million operations to be scheduled on up to one thousand machines. The comparison is based on the best makespan (i.e. completion time) achieved and the time required to solve the problem instances. We test the solvers on single-core and quad-core configurations.

Suggested Citation

  • Da Col, Giacomo & Teppan, Erich C., 2022. "Industrial-size job shop scheduling with constraint programming," Operations Research Perspectives, Elsevier, vol. 9(C).
  • Handle: RePEc:eee:oprepe:v:9:y:2022:i:c:s2214716022000215
    DOI: 10.1016/j.orp.2022.100249
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2214716022000215
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.orp.2022.100249?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David Applegate & William Cook, 1991. "A Computational Study of the Job-Shop Scheduling Problem," INFORMS Journal on Computing, INFORMS, vol. 3(2), pages 149-156, May.
    2. Taillard, E., 1993. "Benchmarks for basic scheduling problems," European Journal of Operational Research, Elsevier, vol. 64(2), pages 278-285, January.
    3. Sungbum Jun & Seokcheon Lee & Hyonho Chun, 2019. "Learning dispatching rules using random forest in flexible job shop scheduling problems," International Journal of Production Research, Taylor & Francis Journals, vol. 57(10), pages 3290-3310, May.
    4. Éric D. Taillard, 1994. "Parallel Taboo Search Techniques for the Job Shop Scheduling Problem," INFORMS Journal on Computing, INFORMS, vol. 6(2), pages 108-117, May.
    5. S. S. Panwalkar & Wafik Iskander, 1977. "A Survey of Scheduling Rules," Operations Research, INFORMS, vol. 25(1), pages 45-61, February.
    6. J. Carlier & E. Pinson, 1989. "An Algorithm for Solving the Job-Shop Problem," Management Science, INFORMS, vol. 35(2), pages 164-176, February.
    7. Carlier, Jacques, 1982. "The one-machine sequencing problem," European Journal of Operational Research, Elsevier, vol. 11(1), pages 42-47, September.
    8. Peter J. M. van Laarhoven & Emile H. L. Aarts & Jan Karel Lenstra, 1992. "Job Shop Scheduling by Simulated Annealing," Operations Research, INFORMS, vol. 40(1), pages 113-125, February.
    9. Harvey M. Wagner, 1959. "An integer linear‐programming model for machine scheduling," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 6(2), pages 131-140, June.
    10. Egon Balas & Jan Karel Lenstra & Alkis Vazacopoulos, 1995. "The One-Machine Problem with Delayed Precedence Constraints and its Use in Job Shop Scheduling," Management Science, INFORMS, vol. 41(1), pages 94-109, January.
    11. Alan S. Manne, 1960. "On the Job-Shop Scheduling Problem," Operations Research, INFORMS, vol. 8(2), pages 219-223, April.
    12. Eugeniusz Nowicki & Czeslaw Smutnicki, 1996. "A Fast Taboo Search Algorithm for the Job Shop Problem," Management Science, INFORMS, vol. 42(6), pages 797-813, June.
    13. Edward H. Bowman, 1959. "The Schedule-Sequencing Problem," Operations Research, INFORMS, vol. 7(5), pages 621-624, October.
    14. Demirkol, Ebru & Mehta, Sanjay & Uzsoy, Reha, 1998. "Benchmarks for shop scheduling problems," European Journal of Operational Research, Elsevier, vol. 109(1), pages 137-141, August.
    15. R. J. M. Vaessens & E. H. L. Aarts & J. K. Lenstra, 1996. "Job Shop Scheduling by Local Search," INFORMS Journal on Computing, INFORMS, vol. 8(3), pages 302-317, August.
    16. M. R. Garey & D. S. Johnson & Ravi Sethi, 1976. "The Complexity of Flowshop and Jobshop Scheduling," Mathematics of Operations Research, INFORMS, vol. 1(2), pages 117-129, May.
    17. Peter Emerson, 2013. "The original Borda count and partial voting," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 40(2), pages 353-358, February.
    18. Jacek Błażewicz & Klaus H. Ecker & Erwin Pesch & Günter Schmidt & Jan Węglarz, 2007. "Handbook on Scheduling," International Handbooks on Information Systems, Springer, number 978-3-540-32220-7, November.
    19. Nowicki, Eugeniusz & Smutnicki, Czeslaw, 1996. "A fast tabu search algorithm for the permutation flow-shop problem," European Journal of Operational Research, Elsevier, vol. 91(1), pages 160-175, May.
    20. Müller, David & Müller, Marcus G. & Kress, Dominik & Pesch, Erwin, 2022. "An algorithm selection approach for the flexible job shop scheduling problem: Choosing constraint programming solvers through machine learning," European Journal of Operational Research, Elsevier, vol. 302(3), pages 874-891.
    21. Carlier, J. & Pinson, E., 1994. "Adjustment of heads and tails for the job-shop problem," European Journal of Operational Research, Elsevier, vol. 78(2), pages 146-161, October.
    22. M. Florian & P. Trepant & G. McMahon, 1971. "An Implicit Enumeration Algorithm for the Machine Sequencing Problem," Management Science, INFORMS, vol. 17(12), pages 782-792, August.
    23. Joseph Adams & Egon Balas & Daniel Zawack, 1988. "The Shifting Bottleneck Procedure for Job Shop Scheduling," Management Science, INFORMS, vol. 34(3), pages 391-401, March.
    24. Gerhard Friedrich & Melanie Frühstück & Vera Mersheeva & Anna Ryabokon & Maria Sander & Andreas Starzacher & Erich Teppan, 2016. "Representing Production Scheduling with Constraint Answer Set Programming," Operations Research Proceedings, in: Marco Lübbecke & Arie Koster & Peter Letmathe & Reinhard Madlener & Britta Peis & Grit Walther (ed.), Operations Research Proceedings 2014, edition 1, pages 159-165, Springer.
    25. Robert H. Storer & S. David Wu & Renzo Vaccari, 1992. "New Search Spaces for Sequencing Problems with Application to Job Shop Scheduling," Management Science, INFORMS, vol. 38(10), pages 1495-1509, October.
    26. Graham McMahon & Michael Florian, 1975. "On Scheduling with Ready Times and Due Dates to Minimize Maximum Lateness," Operations Research, INFORMS, vol. 23(3), pages 475-482, June.
    27. Cheng, T. C. E. & Sin, C. C. S., 1990. "A state-of-the-art review of parallel-machine scheduling research," European Journal of Operational Research, Elsevier, vol. 47(3), pages 271-292, August.
    28. Brucker, Peter & Jurisch, Bernd, 1993. "A new lower bound for the job-shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 64(2), pages 156-167, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Soares, Ricardo & Marques, Alexandra & Amorim, Pedro & Parragh, Sophie N., 2024. "Synchronisation in vehicle routing: Classification schema, modelling framework and literature review," European Journal of Operational Research, Elsevier, vol. 313(3), pages 817-840.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jain, A. S. & Meeran, S., 1999. "Deterministic job-shop scheduling: Past, present and future," European Journal of Operational Research, Elsevier, vol. 113(2), pages 390-434, March.
    2. Blazewicz, Jacek & Domschke, Wolfgang & Pesch, Erwin, 1996. "The job shop scheduling problem: Conventional and new solution techniques," European Journal of Operational Research, Elsevier, vol. 93(1), pages 1-33, August.
    3. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    4. Edzard Weber & Anselm Tiefenbacher & Norbert Gronau, 2019. "Need for Standardization and Systematization of Test Data for Job-Shop Scheduling," Data, MDPI, vol. 4(1), pages 1-21, February.
    5. F. Guerriero, 2008. "Hybrid Rollout Approaches for the Job Shop Scheduling Problem," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 419-438, November.
    6. Diarmuid Grimes & Emmanuel Hebrard, 2015. "Solving Variants of the Job Shop Scheduling Problem Through Conflict-Directed Search," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 268-284, May.
    7. G I Zobolas & C D Tarantilis & G Ioannou, 2009. "A hybrid evolutionary algorithm for the job shop scheduling problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(2), pages 221-235, February.
    8. El-Bouri, A. & Azizi, N. & Zolfaghari, S., 2007. "A comparative study of a new heuristic based on adaptive memory programming and simulated annealing: The case of job shop scheduling," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1894-1910, March.
    9. Bahman Naderi & Rubén Ruiz & Vahid Roshanaei, 2023. "Mixed-Integer Programming vs. Constraint Programming for Shop Scheduling Problems: New Results and Outlook," INFORMS Journal on Computing, INFORMS, vol. 35(4), pages 817-843, July.
    10. Mascis, Alessandro & Pacciarelli, Dario, 2002. "Job-shop scheduling with blocking and no-wait constraints," European Journal of Operational Research, Elsevier, vol. 143(3), pages 498-517, December.
    11. Pezzella, Ferdinando & Merelli, Emanuela, 2000. "A tabu search method guided by shifting bottleneck for the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 120(2), pages 297-310, January.
    12. Francis Sourd & Wim Nuijten, 2000. "Multiple-Machine Lower Bounds for Shop-Scheduling Problems," INFORMS Journal on Computing, INFORMS, vol. 12(4), pages 341-352, November.
    13. Egon Balas & Alkis Vazacopoulos, 1998. "Guided Local Search with Shifting Bottleneck for Job Shop Scheduling," Management Science, INFORMS, vol. 44(2), pages 262-275, February.
    14. Susana Fernandes & Helena Ramalhinho-Lourenço, 2007. "A simple optimised search heuristic for the job-shop scheduling problem," Economics Working Papers 1050, Department of Economics and Business, Universitat Pompeu Fabra.
    15. T. C. E. Cheng & Bo Peng & Zhipeng Lü, 2016. "A hybrid evolutionary algorithm to solve the job shop scheduling problem," Annals of Operations Research, Springer, vol. 242(2), pages 223-237, July.
    16. Ramesh Bollapragada & Norman M. Sadeh, 2004. "Proactive release procedures for just‐in‐time job shop environments, subject to machine failures," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(7), pages 1018-1044, October.
    17. P M E Shutler, 2003. "A priority list based heuristic for the job shop problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(6), pages 571-584, June.
    18. Guinet, Alain & Legrand, Marie, 1998. "Reduction of job-shop problems to flow-shop problems with precedence constraints," European Journal of Operational Research, Elsevier, vol. 109(1), pages 96-110, August.
    19. Paul M E Shutler, 2004. "A priority list based heuristic for the job shop problem: part 2 tabu search," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(7), pages 780-784, July.
    20. Jelke J. Hoorn, 2018. "The Current state of bounds on benchmark instances of the job-shop scheduling problem," Journal of Scheduling, Springer, vol. 21(1), pages 127-128, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:oprepe:v:9:y:2022:i:c:s2214716022000215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/operations-research-perspectives .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.