IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v29y2018i1d10.1007_s10845-015-1091-z.html
   My bibliography  Save this article

Two-generation Pareto ant colony algorithm for multi-objective job shop scheduling problem with alternative process plans and unrelated parallel machines

Author

Listed:
  • Boxuan Zhao

    (Xi’an Jiaotong University)

  • Jianmin Gao

    (Xi’an Jiaotong University)

  • Kun Chen

    (Xi’an Jiaotong University)

  • Ke Guo

    (Xi’an Jiaotong University)

Abstract

The flexibilities of alternative process plans and unrelated parallel machines are benefit for the optimization of the job shop scheduling problem, but meanwhile increase the complexity of the problem. This paper constructs the mathematical model for the multi-objective job shop scheduling problem with alternative process plans and unrelated parallel machines, splits the problem into two sub-problems, namely flexible processing route decision and task sorting, and proposes a two-generation (father and children) Pareto ant colony algorithm to generate a feasible scheduling solution. The father ant colony system solves the flexible processing route decision problem, which selects the most appropriate process node set from the alternative process node set. The children ant colony system solves the sorting problem of the process task set generated by the father ant colony system. The Pareto ant colony system constructs the applicable pheromone matrixes and heuristic information with respect to the sub-problems and objectives. And NSGAII is used as comparison whose genetic operators are re-defined. The experiment confirms the validation of the proposed algorithm. By comparing the result of the algorithm to NSGAII, we can see the proposed algorithm has a better performance.

Suggested Citation

  • Boxuan Zhao & Jianmin Gao & Kun Chen & Ke Guo, 2018. "Two-generation Pareto ant colony algorithm for multi-objective job shop scheduling problem with alternative process plans and unrelated parallel machines," Journal of Intelligent Manufacturing, Springer, vol. 29(1), pages 93-108, January.
  • Handle: RePEc:spr:joinma:v:29:y:2018:i:1:d:10.1007_s10845-015-1091-z
    DOI: 10.1007/s10845-015-1091-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-015-1091-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-015-1091-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Moncayo-Martínez, Luis A. & Zhang, David Z., 2011. "Multi-objective ant colony optimisation: A meta-heuristic approach to supply chain design," International Journal of Production Economics, Elsevier, vol. 131(1), pages 407-420, May.
    2. Karl Doerner & Walter Gutjahr & Richard Hartl & Christine Strauss & Christian Stummer, 2004. "Pareto Ant Colony Optimization: A Metaheuristic Approach to Multiobjective Portfolio Selection," Annals of Operations Research, Springer, vol. 131(1), pages 79-99, October.
    3. P. Mohapatra & A. Nayak & S.K. Kumar & M.K. Tiwari, 2015. "Multi-objective process planning and scheduling using controlled elitist non-dominated sorting genetic algorithm," International Journal of Production Research, Taylor & Francis Journals, vol. 53(6), pages 1712-1735, March.
    4. Garcia-Martinez, C. & Cordon, O. & Herrera, F., 2007. "A taxonomy and an empirical analysis of multiple objective ant colony optimization algorithms for the bi-criteria TSP," European Journal of Operational Research, Elsevier, vol. 180(1), pages 116-148, July.
    5. Li, Xinyu & Shao, Xinyu & Gao, Liang & Qian, Weirong, 2010. "An effective hybrid algorithm for integrated process planning and scheduling," International Journal of Production Economics, Elsevier, vol. 126(2), pages 289-298, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ying Sun & Jeng-Shyang Pan & Pei Hu & Shu-Chuan Chu, 2023. "Enhanced Equilibrium Optimizer algorithm applied in job shop scheduling problem," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1639-1665, April.
    2. Xiaoyu Wen & Qingbo Song & Yunjie Qian & Dongping Qiao & Haoqi Wang & Yuyan Zhang & Hao Li, 2023. "Effective Improved NSGA-II Algorithm for Multi-Objective Integrated Process Planning and Scheduling," Mathematics, MDPI, vol. 11(16), pages 1-17, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moncayo-Martínez, Luis A. & Zhang, David Z., 2013. "Optimising safety stock placement and lead time in an assembly supply chain using bi-objective MAX–MIN ant system," International Journal of Production Economics, Elsevier, vol. 145(1), pages 18-28.
    2. Luo, Hao & Du, Bing & Huang, George Q. & Chen, Huaping & Li, Xiaolin, 2013. "Hybrid flow shop scheduling considering machine electricity consumption cost," International Journal of Production Economics, Elsevier, vol. 146(2), pages 423-439.
    3. Scott, James & Ho, William & Dey, Prasanta K. & Talluri, Srinivas, 2015. "A decision support system for supplier selection and order allocation in stochastic, multi-stakeholder and multi-criteria environments," International Journal of Production Economics, Elsevier, vol. 166(C), pages 226-237.
    4. Wu, Jinchao & Chen, Bokui & Zhang, Kai & Zhou, Jun & Miao, Lixin, 2018. "Ant pheromone route guidance strategy in intelligent transportation systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 591-603.
    5. Pradhananga, Rojee & Taniguchi, Eiichi & Yamada, Tadashi & Qureshi, Ali Gul, 2014. "Bi-objective decision support system for routing and scheduling of hazardous materials," Socio-Economic Planning Sciences, Elsevier, vol. 48(2), pages 135-148.
    6. Jian Xiong & Rui Wang & Jiang Jiang, 2019. "Weapon Selection and Planning Problems Using MOEA/D with Distance-Based Divided Neighborhoods," Complexity, Hindawi, vol. 2019, pages 1-18, November.
    7. F. Perez & T. Gomez, 2016. "Multiobjective project portfolio selection with fuzzy constraints," Annals of Operations Research, Springer, vol. 245(1), pages 7-29, October.
    8. Olivares-Benitez, Elias & Ríos-Mercado, Roger Z. & González-Velarde, José Luis, 2013. "A metaheuristic algorithm to solve the selection of transportation channels in supply chain design," International Journal of Production Economics, Elsevier, vol. 145(1), pages 161-172.
    9. Masoud Rahiminezhad Galankashi & Farimah Mokhatab Rafiei & Maryam Ghezelbash, 2020. "Portfolio selection: a fuzzy-ANP approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-34, December.
    10. Mohammad Reza Hosseinzadeh & Mehdi Heydari & Mohammad Mahdavi Mazdeh, 2022. "Mathematical modeling and two metaheuristic algorithms for integrated process planning and group scheduling with sequence-dependent setup time," Operational Research, Springer, vol. 22(5), pages 5055-5105, November.
    11. Linda Zhang & Carman K.M. Lee & Pervaiz Akhtar, 2020. "Towards customization: Evaluation of integrated sales, product, and production configuration," Post-Print hal-03276827, HAL.
    12. Gutjahr, Walter J. & Katzensteiner, Stefan & Reiter, Peter & Stummer, Christian & Denk, Michaela, 2010. "Multi-objective decision analysis for competence-oriented project portfolio selection," European Journal of Operational Research, Elsevier, vol. 205(3), pages 670-679, September.
    13. Liang, Yun-Chia & Hsiao, Yu-Ming & Tien, Chia-Yun, 2013. "Metaheuristics for drilling operation scheduling in Taiwan PCB industries," International Journal of Production Economics, Elsevier, vol. 141(1), pages 189-198.
    14. Pérez, Fátima & Gómez, Trinidad & Caballero, Rafael & Liern, Vicente, 2018. "Project portfolio selection and planning with fuzzy constraints," Technological Forecasting and Social Change, Elsevier, vol. 131(C), pages 117-129.
    15. Xu Zhang & Zhixue Liao & Lichao Ma & Jin Yao, 2022. "Hierarchical multistrategy genetic algorithm for integrated process planning and scheduling," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 223-246, January.
    16. Xue, Guisen & Felix Offodile, O. & Zhou, Hong & Troutt, Marvin D., 2011. "Integrated production planning with sequence-dependent family setup times," International Journal of Production Economics, Elsevier, vol. 131(2), pages 674-681, June.
    17. Fekri, Roxana & Amiri, Maghsoud & Sajjad, Rasoul & Golestaneh, Ramin, 2016. "Optimization of Bank Portfolio Investment Decision Considering Resistive Economy," Journal of Money and Economy, Monetary and Banking Research Institute, Central Bank of the Islamic Republic of Iran, vol. 11(4), pages 375-400, October.
    18. Mohammad Asghari & Seyed Mohammad Javad Mirzapour Al-E-Hashem & Yacine Rekik, 2022. "Environmental and social implications of incorporating carpooling service on a customized bus system," Post-Print hal-03598768, HAL.
    19. S. Zhang & T. N. Wong, 2018. "Integrated process planning and scheduling: an enhanced ant colony optimization heuristic with parameter tuning," Journal of Intelligent Manufacturing, Springer, vol. 29(3), pages 585-601, March.
    20. Marques, Adriana Cavalcante & Frej, Eduarda Asfora & de Almeida, Adiel Teixeira, 2022. "Multicriteria decision support for project portfolio selection with the FITradeoff method," Omega, Elsevier, vol. 111(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:29:y:2018:i:1:d:10.1007_s10845-015-1091-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.