A distribution‐free control chart for monitoring high‐dimensional processes based on interpoint distances
Author
Abstract
Suggested Citation
DOI: 10.1002/nav.21809
Download full text from publisher
References listed on IDEAS
- Graham, M.A. & Chakraborti, S. & Human, S.W., 2011. "A nonparametric exponentially weighted moving average signed-rank chart for monitoring location," Computational Statistics & Data Analysis, Elsevier, vol. 55(8), pages 2490-2503, August.
- Shuai Huang & Zhenyu Kong & Wenzhen Huang, 2014. "High-dimensional process monitoring and change point detection using embedding distributions in reproducing kernel Hilbert space," IISE Transactions, Taylor & Francis Journals, vol. 46(10), pages 999-1016, October.
- Srivastava, Muni S., 2009. "A test for the mean vector with fewer observations than the dimension under non-normality," Journal of Multivariate Analysis, Elsevier, vol. 100(3), pages 518-532, March.
- Suk Joo Bae & Giang Do & Paul Kvam, 2016. "On data depth and the application of nonparametric multivariate statistical process control charts," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 32(5), pages 660-676, September.
- Zou, Changliang & Qiu, Peihua, 2009. "Multivariate Statistical Process Control Using LASSO," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1586-1596.
- S. Chakraborti & P. van der Laan & M. A. van de Wiel, 2004. "A class of distribution‐free control charts," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 53(3), pages 443-462, August.
- Srivastava, Muni S. & Du, Meng, 2008. "A test for the mean vector with fewer observations than the dimension," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 386-402, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Saha, Enakshi & Sarkar, Soham & Ghosh, Anil K., 2017. "Some high-dimensional one-sample tests based on functions of interpoint distances," Journal of Multivariate Analysis, Elsevier, vol. 161(C), pages 83-95.
- Graham, M.A. & Mukherjee, A. & Chakraborti, S., 2012. "Distribution-free exponentially weighted moving average control charts for monitoring unknown location," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2539-2561.
- Zhang, Jin-Ting & Zhu, Tianming, 2022. "A new normal reference test for linear hypothesis testing in high-dimensional heteroscedastic one-way MANOVA," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
- Srivastava, Muni S. & Kubokawa, Tatsuya, 2013. "Tests for multivariate analysis of variance in high dimension under non-normality," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 204-216.
- Ayyala, Deepak Nag & Park, Junyong & Roy, Anindya, 2017. "Mean vector testing for high-dimensional dependent observations," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 136-155.
- Saber Ali & Zameer Abbas & Hafiz Zafar Nazir & Muhammad Riaz & Xingfa Zhang & Yuan Li, 2020. "On Designing Non-Parametric EWMA Sign Chart under Ranked Set Sampling Scheme with Application to Industrial Process," Mathematics, MDPI, vol. 8(9), pages 1-20, September.
- Jiang Hu & Zhidong Bai & Chen Wang & Wei Wang, 2017. "On testing the equality of high dimensional mean vectors with unequal covariance matrices," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(2), pages 365-387, April.
- Dong, Kai & Pang, Herbert & Tong, Tiejun & Genton, Marc G., 2016. "Shrinkage-based diagonal Hotelling’s tests for high-dimensional small sample size data," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 127-142.
- Muni S. Srivastava & Tatsuya Kubokawa, 2011. "Tests for Multivariate Analysis of Variance in High Dimension Under Non-Normality," CIRJE F-Series CIRJE-F-831, CIRJE, Faculty of Economics, University of Tokyo.
- Zongliang Hu & Tiejun Tong & Marc G. Genton, 2019. "Diagonal likelihood ratio test for equality of mean vectors in high‐dimensional data," Biometrics, The International Biometric Society, vol. 75(1), pages 256-267, March.
- Yin, Yanqing, 2021. "Test for high-dimensional mean vector under missing observations," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
- Muni S. Srivastava & Hirokazu Yanagihara & Tatsuya Kubokawa, 2014. "Tests for Covariance Matrices in High Dimension with Less Sample Size," CIRJE F-Series CIRJE-F-933, CIRJE, Faculty of Economics, University of Tokyo.
- Cai, T. Tony & Xia, Yin, 2014. "High-dimensional sparse MANOVA," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 174-196.
- Yuanyuan Jiang & Xingzhong Xu, 2022. "A Two-Sample Test of High Dimensional Means Based on Posterior Bayes Factor," Mathematics, MDPI, vol. 10(10), pages 1-23, May.
- Davy Paindaveine & Thomas Verdebout, 2013. "Universal Asymptotics for High-Dimensional Sign Tests," Working Papers ECARES ECARES 2013-40, ULB -- Universite Libre de Bruxelles.
- Huang, Yuan & Li, Changcheng & Li, Runze & Yang, Songshan, 2022. "An overview of tests on high-dimensional means," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
- Huiqin Li & Jiang Hu & Zhidong Bai & Yanqing Yin & Kexin Zou, 2017. "Test on the linear combinations of mean vectors in high-dimensional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 188-208, March.
- Harrar, Solomon W. & Kong, Xiaoli, 2022. "Recent developments in high-dimensional inference for multivariate data: Parametric, semiparametric and nonparametric approaches," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
- Srivastava, Muni S. & Katayama, Shota & Kano, Yutaka, 2013. "A two sample test in high dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 349-358.
- He, Yong & Zhang, Mingjuan & Zhang, Xinsheng & Zhou, Wang, 2020. "High-dimensional two-sample mean vectors test and support recovery with factor adjustment," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:65:y:2018:i:4:p:317-330. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.