IDEAS home Printed from https://ideas.repec.org/a/eee/ijocip/v45y2024ics1874548224000155.html
   My bibliography  Save this article

ResNet50-1D-CNN: A new lightweight resNet50-One-dimensional convolution neural network transfer learning-based approach for improved intrusion detection in cyber-physical systems

Author

Listed:
  • Saheed, Yakub Kayode
  • Abdulganiyu, Oluwadamilare Harazeem
  • Majikumna, Kaloma Usman
  • Mustapha, Musa
  • Workneh, Abebaw Degu

Abstract

The cyber-physical system (CPS) plays a crucial role in supporting critical infrastructure like water treatment facilities, gas stations, air conditioning components, and smart grids, which are essential to society. However, these systems are facing a growing susceptibility to a wide range of emerging attacks. Cyber-attacks against CPS have the potential to cause disruptions in the accurate sensing and actuation processes, resulting in significant harm to physical entities and posing concerns for the overall safety of society. Unlike common security measures like firewalls and encryption, which often aren't enough to deal with the unique problems that CPS architectures present, deploying machine learning-based intrusion detection systems (IDS) that are specifically made for CPS has become an important way to make them safer. The application of machine learning algorithms has been suggested as a means of mitigating cyber-attacks on CPS. However, the limited availability of labelled data pertaining to emerging attack techniques poses a significant challenge to the accurate detection of such attacks. In the given scenario, transfer learning emerges as a promising methodology for the detection of cyber-attacks, as it involves the implicit modelling of the system. In this research, we propose a new lightweight transfer learning method via ResNet50-CNN1D for intrusion detection in CPS. The Adaptive Gradient (Adagrad) optimizer was applied in the proposed model to minimize the loss function through the adjustment of network weight. We tested how well the suggested ResNet50-1D-CNN model worked using the UNSW-NB15 dataset and a control system dataset called HAI. The HAI dataset was taken from the testbed and based on a planned physical attack scenario. By calculating the coefficient scores for the top ten (10) features in the HAI and UNSW-NB15 data, it was possible to determine the relevance of a feature. The rationale behind employing transfer learning was to mitigate the complexity associated with the classification of cyber-attacks and runtime. The utilization of transfer learning resulted in notable reductions in both the training and testing times required for the detection of attacks. On the HAI data, the results showed an accuracy of 97.32 %, recall of 98.41 %, F1-score of 96.32 %, and precision of 97.09 %. On the UNSW-NB15 data, the results showed an accuracy of 99.89 %, recall of 99.09 %, F1-score of 98.01 %, and precision of 98.70 %.

Suggested Citation

  • Saheed, Yakub Kayode & Abdulganiyu, Oluwadamilare Harazeem & Majikumna, Kaloma Usman & Mustapha, Musa & Workneh, Abebaw Degu, 2024. "ResNet50-1D-CNN: A new lightweight resNet50-One-dimensional convolution neural network transfer learning-based approach for improved intrusion detection in cyber-physical systems," International Journal of Critical Infrastructure Protection, Elsevier, vol. 45(C).
  • Handle: RePEc:eee:ijocip:v:45:y:2024:i:c:s1874548224000155
    DOI: 10.1016/j.ijcip.2024.100674
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1874548224000155
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijcip.2024.100674?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ijocip:v:45:y:2024:i:c:s1874548224000155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-critical-infrastructure-protection .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.