IDEAS home Printed from https://ideas.repec.org/a/eee/ijocip/v45y2024ics1874548224000155.html
   My bibliography  Save this article

ResNet50-1D-CNN: A new lightweight resNet50-One-dimensional convolution neural network transfer learning-based approach for improved intrusion detection in cyber-physical systems

Author

Listed:
  • Saheed, Yakub Kayode
  • Abdulganiyu, Oluwadamilare Harazeem
  • Majikumna, Kaloma Usman
  • Mustapha, Musa
  • Workneh, Abebaw Degu

Abstract

The cyber-physical system (CPS) plays a crucial role in supporting critical infrastructure like water treatment facilities, gas stations, air conditioning components, and smart grids, which are essential to society. However, these systems are facing a growing susceptibility to a wide range of emerging attacks. Cyber-attacks against CPS have the potential to cause disruptions in the accurate sensing and actuation processes, resulting in significant harm to physical entities and posing concerns for the overall safety of society. Unlike common security measures like firewalls and encryption, which often aren't enough to deal with the unique problems that CPS architectures present, deploying machine learning-based intrusion detection systems (IDS) that are specifically made for CPS has become an important way to make them safer. The application of machine learning algorithms has been suggested as a means of mitigating cyber-attacks on CPS. However, the limited availability of labelled data pertaining to emerging attack techniques poses a significant challenge to the accurate detection of such attacks. In the given scenario, transfer learning emerges as a promising methodology for the detection of cyber-attacks, as it involves the implicit modelling of the system. In this research, we propose a new lightweight transfer learning method via ResNet50-CNN1D for intrusion detection in CPS. The Adaptive Gradient (Adagrad) optimizer was applied in the proposed model to minimize the loss function through the adjustment of network weight. We tested how well the suggested ResNet50-1D-CNN model worked using the UNSW-NB15 dataset and a control system dataset called HAI. The HAI dataset was taken from the testbed and based on a planned physical attack scenario. By calculating the coefficient scores for the top ten (10) features in the HAI and UNSW-NB15 data, it was possible to determine the relevance of a feature. The rationale behind employing transfer learning was to mitigate the complexity associated with the classification of cyber-attacks and runtime. The utilization of transfer learning resulted in notable reductions in both the training and testing times required for the detection of attacks. On the HAI data, the results showed an accuracy of 97.32 %, recall of 98.41 %, F1-score of 96.32 %, and precision of 97.09 %. On the UNSW-NB15 data, the results showed an accuracy of 99.89 %, recall of 99.09 %, F1-score of 98.01 %, and precision of 98.70 %.

Suggested Citation

  • Saheed, Yakub Kayode & Abdulganiyu, Oluwadamilare Harazeem & Majikumna, Kaloma Usman & Mustapha, Musa & Workneh, Abebaw Degu, 2024. "ResNet50-1D-CNN: A new lightweight resNet50-One-dimensional convolution neural network transfer learning-based approach for improved intrusion detection in cyber-physical systems," International Journal of Critical Infrastructure Protection, Elsevier, vol. 45(C).
  • Handle: RePEc:eee:ijocip:v:45:y:2024:i:c:s1874548224000155
    DOI: 10.1016/j.ijcip.2024.100674
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1874548224000155
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijcip.2024.100674?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mingtao Wu & Zhengyi Song & Young B. Moon, 2019. "Detecting cyber-physical attacks in CyberManufacturing systems with machine learning methods," Journal of Intelligent Manufacturing, Springer, vol. 30(3), pages 1111-1123, March.
    2. George C. Konstantopoulos & Antonio T. Alexandridis & Panos C. Papageorgiou, 2020. "Towards the Integration of Modern Power Systems into a Cyber–Physical Framework," Energies, MDPI, vol. 13(9), pages 1-20, May.
    3. Jiangang Hao & Tin Kam Ho, 2019. "Machine Learning Made Easy: A Review of Scikit-learn Package in Python Programming Language," Journal of Educational and Behavioral Statistics, , vol. 44(3), pages 348-361, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ehab Issa El-Sayed & Salah K. ElSayed & Mohammad Alsharef, 2024. "Data-Driven Approaches for State-of-Charge Estimation in Battery Electric Vehicles Using Machine and Deep Learning Techniques," Sustainability, MDPI, vol. 16(21), pages 1-21, October.
    2. Xiaobao Zhu & Jing Shi & Fengjie Xie & Rouqi Song, 2020. "Pricing strategy and system performance in a cloud-based manufacturing system built on blockchain technology," Journal of Intelligent Manufacturing, Springer, vol. 31(8), pages 1985-2002, December.
    3. Muideen Adegoke & Alaka Hafiz & Saheed Ajayi & Razak Olu-Ajayi, 2022. "Application of Multilayer Extreme Learning Machine for Efficient Building Energy Prediction," Energies, MDPI, vol. 15(24), pages 1-21, December.
    4. Taleh Agasiev & Anatoly Karpenko, 2024. "Exploratory Landscape Validation for Bayesian Optimization Algorithms," Mathematics, MDPI, vol. 12(3), pages 1-21, January.
    5. Harold Doran, 2023. "A Collection of Numerical Recipes Useful for Building Scalable Psychometric Applications," Journal of Educational and Behavioral Statistics, , vol. 48(1), pages 37-69, February.
    6. Ehsan Harirchian & Tom Lahmer & Shahla Rasulzade, 2020. "Earthquake Hazard Safety Assessment of Existing Buildings Using Optimized Multi-Layer Perceptron Neural Network," Energies, MDPI, vol. 13(8), pages 1-16, April.
    7. Ranabhat, Bikash & Clements, Joseph & Gatlin, Jacob & Hsiao, Kuang-Ting & Yampolskiy, Mark, 2019. "Optimal sabotage attack on composite material parts," International Journal of Critical Infrastructure Protection, Elsevier, vol. 26(C).
    8. Lilia Tightiz & Joon Yoo, 2022. "A Review on a Data-Driven Microgrid Management System Integrating an Active Distribution Network: Challenges, Issues, and New Trends," Energies, MDPI, vol. 15(22), pages 1-24, November.
    9. Ivan Postnikov & Ekaterina Samarkina & Andrey Penkovskii & Vladimir Kornev & Denis Sidorov, 2023. "Modeling Unpredictable Behavior of Energy Facilities to Ensure Reliable Operation in a Cyber-Physical System," Energies, MDPI, vol. 16(19), pages 1-11, October.
    10. Ying Zhang & Mutahar Safdar & Jiarui Xie & Jinghao Li & Manuel Sage & Yaoyao Fiona Zhao, 2023. "A systematic review on data of additive manufacturing for machine learning applications: the data quality, type, preprocessing, and management," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3305-3340, December.
    11. Anthony Njuguna Matheri & Zanele Blessed Sithole & Belaid Mohamed, 2024. "Data-Driven Circular Economy of Biowaste to Bioenergy with Conventional Prediction Modelling and Machine Learning," Circular Economy and Sustainability, Springer, vol. 4(2), pages 929-950, June.
    12. Muhammad Khalid Anser & Munir Ahmad & Muhammad Azhar Khan & Abdelmohsen A. Nassani & Mohamed Haffar & Khalid Zaman, 2024. "The “IMPACT” of Web of Science Coverage and Scientific and Technical Journal Articles on the World’s Income: Scientific Informatics and the Knowledge-Driven Economy," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(1), pages 3147-3173, March.
    13. Ayed Alwadain & Rao Faizan Ali & Amgad Muneer, 2023. "Estimating Financial Fraud through Transaction-Level Features and Machine Learning," Mathematics, MDPI, vol. 11(5), pages 1-15, February.
    14. Safari, Mohammad & Parvinnia, Elham & Haddad, Alireza Keshavarz, 2021. "Industrial intrusion detection based on the behavior of rotating machine," International Journal of Critical Infrastructure Protection, Elsevier, vol. 34(C).
    15. Md Doulotuzzaman Xames & Fariha Kabir Torsha & Ferdous Sarwar, 2023. "A systematic literature review on recent trends of machine learning applications in additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 34(6), pages 2529-2555, August.
    16. Maksymilian Mądziel & Tiziana Campisi, 2023. "Energy Consumption of Electric Vehicles: Analysis of Selected Parameters Based on Created Database," Energies, MDPI, vol. 16(3), pages 1-18, February.
    17. Zhangyue Shi & Abdullah Al Mamun & Chen Kan & Wenmeng Tian & Chenang Liu, 2023. "An LSTM-autoencoder based online side channel monitoring approach for cyber-physical attack detection in additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1815-1831, April.
    18. Zhao Peng & Huan Zhang & Hongtao Tang & Yue Feng & Weiming Yin, 2022. "Research on flexible job-shop scheduling problem in green sustainable manufacturing based on learning effect," Journal of Intelligent Manufacturing, Springer, vol. 33(6), pages 1725-1746, August.
    19. William Derigent & Olivier Cardin & Damien Trentesaux, 2021. "Industry 4.0: contributions of holonic manufacturing control architectures and future challenges," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 1797-1818, October.
    20. Ann-Kathrin Edrich & Anil Yildiz & Ribana Roscher & Alexander Bast & Frank Graf & Julia Kowalski, 2024. "A modular framework for FAIR shallow landslide susceptibility mapping based on machine learning," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(9), pages 8953-8982, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ijocip:v:45:y:2024:i:c:s1874548224000155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-critical-infrastructure-protection .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.