Machine learning techniques in additive manufacturing: a state of the art review on design, processes and production control
Author
Abstract
Suggested Citation
DOI: 10.1007/s10845-022-02029-5
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wo Jae Lee & Gamini P. Mendis & Matthew J. Triebe & John W. Sutherland, 2020. "Monitoring of a machining process using kernel principal component analysis and kernel density estimation," Journal of Intelligent Manufacturing, Springer, vol. 31(5), pages 1175-1189, June.
- Rahul Rai & Manoj Kumar Tiwari & Dmitry Ivanov & Alexandre Dolgui, 2021. "Machine learning in manufacturing and industry 4.0 applications," International Journal of Production Research, Taylor & Francis Journals, vol. 59(16), pages 4773-4778, August.
- Hapfelmeier, A. & Ulm, K., 2014. "Variable selection by Random Forests using data with missing values," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 129-139.
- Dalenogare, Lucas Santos & Benitez, Guilherme Brittes & Ayala, Néstor Fabián & Frank, Alejandro Germán, 2018. "The expected contribution of Industry 4.0 technologies for industrial performance," International Journal of Production Economics, Elsevier, vol. 204(C), pages 383-394.
- Zoran Jurkovic & Goran Cukor & Miran Brezocnik & Tomislav Brajkovic, 2018. "A comparison of machine learning methods for cutting parameters prediction in high speed turning process," Journal of Intelligent Manufacturing, Springer, vol. 29(8), pages 1683-1693, December.
- Peters, Jan & Baets, Bernard De & Verhoest, Niko E.C. & Samson, Roeland & Degroeve, Sven & Becker, Piet De & Huybrechts, Willy, 2007. "Random forests as a tool for ecohydrological distribution modelling," Ecological Modelling, Elsevier, vol. 207(2), pages 304-318.
- Yanning Sun & Wei Qin & Zilong Zhuang & Hongwei Xu, 2021. "An adaptive fault detection and root-cause analysis scheme for complex industrial processes using moving window KPCA and information geometric causal inference," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 2007-2021, October.
- Evgeniou, Theodoros & Poggio, Tomaso & Pontil, Massimiliano & Verri, Alessandro, 2002. "Regularization and statistical learning theory for data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 421-432, February.
- Loyer, Jean-Loup & Henriques, Elsa & Fontul, Mihail & Wiseall, Steve, 2016. "Comparison of Machine Learning methods applied to the estimation of manufacturing cost of jet engine components," International Journal of Production Economics, Elsevier, vol. 178(C), pages 109-119.
- Xin, Xilin & Tu, Yidong & Stojanovic, Vladimir & Wang, Hai & Shi, Kaibo & He, Shuping & Pan, Tianhong, 2022. "Online reinforcement learning multiplayer non-zero sum games of continuous-time Markov jump linear systems," Applied Mathematics and Computation, Elsevier, vol. 412(C).
- Maroua Said & Khaoula ben Abdellafou & Okba Taouali, 2020. "Machine learning technique for data-driven fault detection of nonlinear processes," Journal of Intelligent Manufacturing, Springer, vol. 31(4), pages 865-884, April.
- Longhui Zhou & Hongfeng Tao & Wojciech Paszke & Vladimir Stojanovic & Huizhong Yang, 2020. "PD-Type Iterative Learning Control for Uncertain Spatially Interconnected Systems," Mathematics, MDPI, vol. 8(9), pages 1-18, September.
- Dunk, Alan S., 1992. "Reliance on budgetary control, manufacturing process automation and production subunit performance: A research note," Accounting, Organizations and Society, Elsevier, vol. 17(3-4), pages 195-203.
- Liang Tian & Yu Luo, 2020. "A study on the prediction of inherent deformation in fillet-welded joint using support vector machine and genetic optimization algorithm," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 575-596, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chun Fai Lui & Ahmed Maged & Min Xie, 2024. "A novel image feature based self-supervised learning model for effective quality inspection in additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 35(7), pages 3543-3558, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Faping Zhang & Jialun Zhang & Junjiu Ma, 2023. "Data-manifold-based monitoring and anomaly diagnosis for manufacturing process," Journal of Intelligent Manufacturing, Springer, vol. 34(7), pages 3159-3177, October.
- Jinping Liu & Jie Wang & Xianfeng Liu & Tianyu Ma & Zhaohui Tang, 2022. "MWRSPCA: online fault monitoring based on moving window recursive sparse principal component analysis," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1255-1271, June.
- Kinkel, Steffen & Capestro, Mauro & Di Maria, Eleonora & Bettiol, Marco, 2023. "Artificial intelligence and relocation of production activities: An empirical cross-national study," International Journal of Production Economics, Elsevier, vol. 261(C).
- Muhammad Altaf & Wesam Salah Alaloul & Muhammad Ali Musarat & Abdul Hannan Qureshi, 2023. "Life cycle cost analysis (LCCA) of construction projects: sustainability perspective," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12071-12118, November.
- Gilberto Santos & Jose Carlos Sá & Maria João Félix & Luís Barreto & Filipe Carvalho & Manuel Doiro & Kristína Zgodavová & Miladin Stefanović, 2021. "New Needed Quality Management Skills for Quality Managers 4.0," Sustainability, MDPI, vol. 13(11), pages 1-22, May.
- Verônica Maurer Tabim & Néstor Fabián Ayala & Alejandro G. Frank, 2024. "Implementing Vertical Integration in the Industry 4.0 Journey: Which Factors Influence the Process of Information Systems Adoption?," Information Systems Frontiers, Springer, vol. 26(5), pages 1615-1632, October.
- Ed Burton & David John Edwards & Chris Roberts & Nicholas Chileshe & Joseph H. K. Lai, 2021. "Delineating the Implications of Dispersing Teams and Teleworking in an Agile UK Construction Sector," Sustainability, MDPI, vol. 13(17), pages 1-21, September.
- Michal Gluszak & Remigiusz Gawlik & Malgorzata Zieba, 2019.
"Smart and Green Buildings Features in the Decision-Making Hierarchy of Office Space Tenants: An Analytic Hierarchy Process Study,"
Administrative Sciences, MDPI, vol. 9(3), pages 1-16, July.
- Głuszak, Michał & Gawlik, Remigiusz & Zięba, Małgorzata, 2019. "Smart and Green Buildings Features in the Decision-Making Hierarchy of Office Space Tenants: An Analytic Hierarchy Process Study," MPRA Paper 95279, University Library of Munich, Germany.
- Prabhu Mannadhan & Jerzy Ryszard Szymański & Marta Zurek-Mortka & Mithileysh Sathiyanarayanan, 2024. "A Novel Framework for the Iraqi Manufacturing Industry Towards the Adoption of Industry 4.0," Sustainability, MDPI, vol. 16(20), pages 1-19, October.
- Oscar F. Bustinza & Ferrán Vendrell-Herrero & Francisco J. Sánchez-Montesinos & José Antonio Campos-Granados, 2021. "Should Manufacturers Support the Entire Product Lifecycle with Services?," Sustainability, MDPI, vol. 13(5), pages 1-14, February.
- Govindan, Kannan & Kannan, Devika & Jørgensen, Thomas Ballegård & Nielsen, Tim Straarup, 2022. "Supply Chain 4.0 performance measurement: A systematic literature review, framework development, and empirical evidence," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
- Yikalo H. Araya & Tarmo K. Remmel & Ajith H. Perera, 2016. "What governs the presence of residual vegetation in boreal wildfires?," Journal of Geographical Systems, Springer, vol. 18(2), pages 159-181, April.
- Jorge Andrés-Sánchez & Jaume Gené-Albesa, 2024. "Not with the bot! The relevance of trust to explain the acceptance of chatbots by insurance customers," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-12, December.
- Tortorella, Guilherme Luz & Narayanamurthy, Gopalakrishnan & Thurer, Matthias, 2021. "Identifying pathways to a high-performing lean automation implementation: An empirical study in the manufacturing industry," International Journal of Production Economics, Elsevier, vol. 231(C).
- Ghannouchi, Imen, 2023. "Examining the dynamic nexus between industry 4.0 technologies and sustainable economy: New insights from empirical evidence using GMM estimator across 20 OECD nations," Technology in Society, Elsevier, vol. 75(C).
- Ismael Cristofer Baierle & Francisco Tardelli da Silva & Ricardo Gonçalves de Faria Correa & Jones Luís Schaefer & Matheus Becker Da Costa & Guilherme Brittes Benitez & Elpidio Oscar Benitez Nara, 2022. "Competitiveness of Food Industry in the Era of Digital Transformation towards Agriculture 4.0," Sustainability, MDPI, vol. 14(18), pages 1-22, September.
- Li, Ying & Dai, Jing & Cui, Li, 2020. "The impact of digital technologies on economic and environmental performance in the context of industry 4.0: A moderated mediation model," International Journal of Production Economics, Elsevier, vol. 229(C).
- Turkcan, Hulya & Imamoglu, Salih Zeki & Ince, Huseyin, 2022. "To be more innovative and more competitive in dynamic environments: The role of additive manufacturing," International Journal of Production Economics, Elsevier, vol. 246(C).
- Xi, Mengjie & Liu, Yang & Fang, Wei & Feng, Taiwen, 2024. "Intelligent manufacturing for strengthening operational resilience during the COVID-19 pandemic: A dynamic capability theory perspective," International Journal of Production Economics, Elsevier, vol. 267(C).
- Maria Kozlovska & Daria Klosova & Zuzana Strukova, 2021. "Impact of Industry 4.0 Platform on the Formation of Construction 4.0 Concept: A Literature Review," Sustainability, MDPI, vol. 13(5), pages 1-15, March.
More about this item
Keywords
Manufacturing; Industry 4.0; Machine learning; Additive manufacturing; Smart manufacturing;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:34:y:2023:i:1:d:10.1007_s10845-022-02029-5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.