IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v34y2023i1d10.1007_s10845-022-02029-5.html
   My bibliography  Save this article

Machine learning techniques in additive manufacturing: a state of the art review on design, processes and production control

Author

Listed:
  • Sachin Kumar

    (Indian Institute of Science (IISc) Bengaluru)

  • T. Gopi

    (Indian Institute of Technology (IIT) Palakkad)

  • N. Harikeerthana

    (Nitte Meenakshi Institute of Technology Bengaluru)

  • Munish Kumar Gupta

    (Opole University of Technology)

  • Vidit Gaur

    (Indian Institute of Technology (IIT) Roorkee)

  • Grzegorz M. Krolczyk

    (Opole University of Technology)

  • ChuanSong Wu

    (Shandong University Jinan)

Abstract

For several industries, the traditional manufacturing processes are time-consuming and uneconomical due to the absence of the right tool to produce the products. In a couple of years, machine learning (ML) algorithms have become more prevalent in manufacturing to develop items and products with reduced labor cost, time, and effort. Digitalization with cutting-edge manufacturing methods and massive data availability have further boosted the necessity and interest in integrating ML and optimization techniques to enhance product quality. ML integrated manufacturing methods increase acceptance of new approaches, save time, energy, and resources, and avoid waste. ML integrated assembly processes help creating what is known as smart manufacturing, where technology automatically adjusts any errors in real-time to prevent any spillage. Though manufacturing sectors use different techniques and tools for computing, recent methods such as the ML and data mining techniques are instrumental in solving challenging industrial and research problems. Therefore, this paper discusses the current state of ML technique, focusing on modern manufacturing methods i.e., additive manufacturing. The various categories especially focus on design, processes and production control of additive manufacturing are described in the form of state of the art review.

Suggested Citation

  • Sachin Kumar & T. Gopi & N. Harikeerthana & Munish Kumar Gupta & Vidit Gaur & Grzegorz M. Krolczyk & ChuanSong Wu, 2023. "Machine learning techniques in additive manufacturing: a state of the art review on design, processes and production control," Journal of Intelligent Manufacturing, Springer, vol. 34(1), pages 21-55, January.
  • Handle: RePEc:spr:joinma:v:34:y:2023:i:1:d:10.1007_s10845-022-02029-5
    DOI: 10.1007/s10845-022-02029-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-022-02029-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-022-02029-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wo Jae Lee & Gamini P. Mendis & Matthew J. Triebe & John W. Sutherland, 2020. "Monitoring of a machining process using kernel principal component analysis and kernel density estimation," Journal of Intelligent Manufacturing, Springer, vol. 31(5), pages 1175-1189, June.
    2. Rahul Rai & Manoj Kumar Tiwari & Dmitry Ivanov & Alexandre Dolgui, 2021. "Machine learning in manufacturing and industry 4.0 applications," International Journal of Production Research, Taylor & Francis Journals, vol. 59(16), pages 4773-4778, August.
    3. Hapfelmeier, A. & Ulm, K., 2014. "Variable selection by Random Forests using data with missing values," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 129-139.
    4. Dalenogare, Lucas Santos & Benitez, Guilherme Brittes & Ayala, Néstor Fabián & Frank, Alejandro Germán, 2018. "The expected contribution of Industry 4.0 technologies for industrial performance," International Journal of Production Economics, Elsevier, vol. 204(C), pages 383-394.
    5. Zoran Jurkovic & Goran Cukor & Miran Brezocnik & Tomislav Brajkovic, 2018. "A comparison of machine learning methods for cutting parameters prediction in high speed turning process," Journal of Intelligent Manufacturing, Springer, vol. 29(8), pages 1683-1693, December.
    6. Peters, Jan & Baets, Bernard De & Verhoest, Niko E.C. & Samson, Roeland & Degroeve, Sven & Becker, Piet De & Huybrechts, Willy, 2007. "Random forests as a tool for ecohydrological distribution modelling," Ecological Modelling, Elsevier, vol. 207(2), pages 304-318.
    7. Yanning Sun & Wei Qin & Zilong Zhuang & Hongwei Xu, 2021. "An adaptive fault detection and root-cause analysis scheme for complex industrial processes using moving window KPCA and information geometric causal inference," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 2007-2021, October.
    8. Evgeniou, Theodoros & Poggio, Tomaso & Pontil, Massimiliano & Verri, Alessandro, 2002. "Regularization and statistical learning theory for data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 421-432, February.
    9. Loyer, Jean-Loup & Henriques, Elsa & Fontul, Mihail & Wiseall, Steve, 2016. "Comparison of Machine Learning methods applied to the estimation of manufacturing cost of jet engine components," International Journal of Production Economics, Elsevier, vol. 178(C), pages 109-119.
    10. Xin, Xilin & Tu, Yidong & Stojanovic, Vladimir & Wang, Hai & Shi, Kaibo & He, Shuping & Pan, Tianhong, 2022. "Online reinforcement learning multiplayer non-zero sum games of continuous-time Markov jump linear systems," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    11. Maroua Said & Khaoula ben Abdellafou & Okba Taouali, 2020. "Machine learning technique for data-driven fault detection of nonlinear processes," Journal of Intelligent Manufacturing, Springer, vol. 31(4), pages 865-884, April.
    12. Longhui Zhou & Hongfeng Tao & Wojciech Paszke & Vladimir Stojanovic & Huizhong Yang, 2020. "PD-Type Iterative Learning Control for Uncertain Spatially Interconnected Systems," Mathematics, MDPI, vol. 8(9), pages 1-18, September.
    13. Dunk, Alan S., 1992. "Reliance on budgetary control, manufacturing process automation and production subunit performance: A research note," Accounting, Organizations and Society, Elsevier, vol. 17(3-4), pages 195-203.
    14. Liang Tian & Yu Luo, 2020. "A study on the prediction of inherent deformation in fillet-welded joint using support vector machine and genetic optimization algorithm," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 575-596, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chun Fai Lui & Ahmed Maged & Min Xie, 2024. "A novel image feature based self-supervised learning model for effective quality inspection in additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 35(7), pages 3543-3558, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Faping Zhang & Jialun Zhang & Junjiu Ma, 2023. "Data-manifold-based monitoring and anomaly diagnosis for manufacturing process," Journal of Intelligent Manufacturing, Springer, vol. 34(7), pages 3159-3177, October.
    2. Jinping Liu & Jie Wang & Xianfeng Liu & Tianyu Ma & Zhaohui Tang, 2022. "MWRSPCA: online fault monitoring based on moving window recursive sparse principal component analysis," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1255-1271, June.
    3. Kinkel, Steffen & Capestro, Mauro & Di Maria, Eleonora & Bettiol, Marco, 2023. "Artificial intelligence and relocation of production activities: An empirical cross-national study," International Journal of Production Economics, Elsevier, vol. 261(C).
    4. Gilberto Santos & Jose Carlos Sá & Maria João Félix & Luís Barreto & Filipe Carvalho & Manuel Doiro & Kristína Zgodavová & Miladin Stefanović, 2021. "New Needed Quality Management Skills for Quality Managers 4.0," Sustainability, MDPI, vol. 13(11), pages 1-22, May.
    5. Michal Gluszak & Remigiusz Gawlik & Malgorzata Zieba, 2019. "Smart and Green Buildings Features in the Decision-Making Hierarchy of Office Space Tenants: An Analytic Hierarchy Process Study," Administrative Sciences, MDPI, vol. 9(3), pages 1-16, July.
    6. Yikalo H. Araya & Tarmo K. Remmel & Ajith H. Perera, 2016. "What governs the presence of residual vegetation in boreal wildfires?," Journal of Geographical Systems, Springer, vol. 18(2), pages 159-181, April.
    7. Tortorella, Guilherme Luz & Narayanamurthy, Gopalakrishnan & Thurer, Matthias, 2021. "Identifying pathways to a high-performing lean automation implementation: An empirical study in the manufacturing industry," International Journal of Production Economics, Elsevier, vol. 231(C).
    8. Ismael Cristofer Baierle & Francisco Tardelli da Silva & Ricardo Gonçalves de Faria Correa & Jones Luís Schaefer & Matheus Becker Da Costa & Guilherme Brittes Benitez & Elpidio Oscar Benitez Nara, 2022. "Competitiveness of Food Industry in the Era of Digital Transformation towards Agriculture 4.0," Sustainability, MDPI, vol. 14(18), pages 1-22, September.
    9. Li, Ying & Dai, Jing & Cui, Li, 2020. "The impact of digital technologies on economic and environmental performance in the context of industry 4.0: A moderated mediation model," International Journal of Production Economics, Elsevier, vol. 229(C).
    10. Xi, Mengjie & Liu, Yang & Fang, Wei & Feng, Taiwen, 2024. "Intelligent manufacturing for strengthening operational resilience during the COVID-19 pandemic: A dynamic capability theory perspective," International Journal of Production Economics, Elsevier, vol. 267(C).
    11. Jiuh‐Biing Sheu & Tsan‐Ming Choi, 2023. "Can we work more safely and healthily with robot partners? A human‐friendly robot–human‐coordinated order fulfillment scheme," Production and Operations Management, Production and Operations Management Society, vol. 32(3), pages 794-812, March.
    12. Sarah Mittlefehldt & Erin Bunting & Emily Huff & Joseph Welsh & Robert Goodwin, 2021. "New Methods for Assessing Sustainability of Wood-Burning Energy Facilities: Combining Historical and Spatial Approaches," Energies, MDPI, vol. 14(23), pages 1-18, November.
    13. Olumide Emmanuel Oluyisola & Fabio Sgarbossa & Jan Ola Strandhagen, 2020. "Smart Production Planning and Control: Concept, Use-Cases and Sustainability Implications," Sustainability, MDPI, vol. 12(9), pages 1-29, May.
    14. Mohammadreza Akbari & John L. Hopkins, 2022. "Digital technologies as enablers of supply chain sustainability in an emerging economy," Operations Management Research, Springer, vol. 15(3), pages 689-710, December.
    15. Mykola Odrekhivskyi & Orysya Pshyk-Kovalska & Volodymyr Zhezhukha & Iryna Ivanochko, 2022. "Intelligent Management of Enterprise Business Processes," Mathematics, MDPI, vol. 11(1), pages 1-15, December.
    16. Livio Cricelli & Serena Strazzullo, 2021. "The Economic Aspect of Digital Sustainability: A Systematic Review," Sustainability, MDPI, vol. 13(15), pages 1-15, July.
    17. Zejun Tong & Chun Zhang & Xiaotai Wu & Pengcheng Gao & Shuang Wu & Haoyu Li, 2023. "Economic Optimization Control Method of Grid-Connected Microgrid Based on Improved Pinning Consensus," Energies, MDPI, vol. 16(3), pages 1-31, January.
    18. Özköse, Hakan & Güney, Gül, 2023. "The effects of industry 4.0 on productivity: A scientific mapping study," Technology in Society, Elsevier, vol. 75(C).
    19. Siqing Shan & Xin Wen & Yigang Wei & Zijin Wang & Yong Chen, 2020. "Intelligent manufacturing in industry 4.0: A case study of Sany heavy industry," Systems Research and Behavioral Science, Wiley Blackwell, vol. 37(4), pages 679-690, July.
    20. Natália Barbosa, 2024. "Artificial Intelligence and exporting performance:Firm-level evidence from Portugal," GEE Papers 183, Gabinete de Estratégia e Estudos, Ministério da Economia, revised Sep 2024.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:34:y:2023:i:1:d:10.1007_s10845-022-02029-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.