IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v34y2023i6d10.1007_s10845-022-01937-w.html
   My bibliography  Save this article

DRKPCA-VBGMM: fault monitoring via dynamically-recursive kernel principal component analysis with variational Bayesian Gaussian mixture model

Author

Listed:
  • Meiling Cai

    (Hunan Normal University)

  • Yaqin Shi

    (Hunan Normal University)

  • Jinping Liu

    (Hunan Normal University
    Hunan Normal University)

  • Jean Paul Niyoyita

    (University of Rwanda)

  • Hadi Jahanshahi

    (University of Manitoba)

  • Ayman A. Aly

    (Taif University)

Abstract

Fault monitoring plays a vital role in ensuring operating safety and product quality of industrial manufacturing processes. However, modern industrial processes are generally developing towards the direction of large scale, diversification, and individuation, complexity, and refinement, exhibiting strong non-linearity and dynamically time-varying characteristics, leading to a great challenge in fault monitoring. This paper addresses a fault monitoring method based on a dynamically-recursive kernel principal component analysis (DRKPCA) model with a variational Bayesian Gaussian mixture model (VBGMM), called DRKPCA-VBGMM, for the continuous, time-varying process monitoring. Specifically, a computationally efficient DRKPCA scheme is derived for the anomaly/fault detection of time-varying processes. Successively, a variational inference-induced optimal Gaussian mixture model, called VBGMM, is introduced for the fault type identification, which can automatically converge to the real number of Gaussian components based on the empirical Bayes approach to achieve the optimal probability distribution model. Extensive confirmatory and comparative experiments on a benchmark continuous stirred tank reactor process and a continuous casting process from a top steelmaking plant in China have demonstrated the effectiveness and superiority of the proposed method. Specifically, the proposed method can effectively improve the fault detection and identification accuracies while reducing false alarm rates, laying a foundation to ensure stable and optimized production of complex manufacturing processes.

Suggested Citation

  • Meiling Cai & Yaqin Shi & Jinping Liu & Jean Paul Niyoyita & Hadi Jahanshahi & Ayman A. Aly, 2023. "DRKPCA-VBGMM: fault monitoring via dynamically-recursive kernel principal component analysis with variational Bayesian Gaussian mixture model," Journal of Intelligent Manufacturing, Springer, vol. 34(6), pages 2625-2653, August.
  • Handle: RePEc:spr:joinma:v:34:y:2023:i:6:d:10.1007_s10845-022-01937-w
    DOI: 10.1007/s10845-022-01937-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-022-01937-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-022-01937-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David M. Blei & Alp Kucukelbir & Jon D. McAuliffe, 2017. "Variational Inference: A Review for Statisticians," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 859-877, April.
    2. Paul Bekker & Joëlle van Essen, 2020. "ML and GMM with concentrated instruments in the static panel data model," Econometric Reviews, Taylor & Francis Journals, vol. 39(2), pages 181-195, February.
    3. Maroua Said & Khaoula ben Abdellafou & Okba Taouali, 2020. "Machine learning technique for data-driven fault detection of nonlinear processes," Journal of Intelligent Manufacturing, Springer, vol. 31(4), pages 865-884, April.
    4. Hooshangifar, M. & Talebi, H., 2021. "Bayesian optimal design for non-linear model under non-regularity condition," Statistics & Probability Letters, Elsevier, vol. 169(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen Liu & Hongyan Liu, 2021. "Tagging Items Automatically Based on Both Content Information and Browsing Behaviors," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 882-897, July.
    2. Liu, Jie & Ye, Zifeng & Chen, Kun & Zhang, Panpan, 2024. "Variational Bayesian inference for bipartite mixed-membership stochastic block model with applications to collaborative filtering," Computational Statistics & Data Analysis, Elsevier, vol. 189(C).
    3. Djohan Bonnet & Tifenn Hirtzlin & Atreya Majumdar & Thomas Dalgaty & Eduardo Esmanhotto & Valentina Meli & Niccolo Castellani & Simon Martin & Jean-François Nodin & Guillaume Bourgeois & Jean-Michel P, 2023. "Bringing uncertainty quantification to the extreme-edge with memristor-based Bayesian neural networks," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Seokhyun Chung & Raed Al Kontar & Zhenke Wu, 2022. "Weakly Supervised Multi-output Regression via Correlated Gaussian Processes," INFORMS Joural on Data Science, INFORMS, vol. 1(2), pages 115-137, October.
    5. Gary Koop & Dimitris Korobilis, 2023. "Bayesian Dynamic Variable Selection In High Dimensions," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 1047-1074, August.
    6. Ziqi Zhang & Xinye Zhao & Mehak Bindra & Peng Qiu & Xiuwei Zhang, 2024. "scDisInFact: disentangled learning for integration and prediction of multi-batch multi-condition single-cell RNA-sequencing data," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    7. Dimitris Korobilis & Davide Pettenuzzo, 2020. "Machine Learning Econometrics: Bayesian algorithms and methods," Working Papers 2020_09, Business School - Economics, University of Glasgow.
    8. Jan Prüser & Florian Huber, 2024. "Nonlinearities in macroeconomic tail risk through the lens of big data quantile regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(2), pages 269-291, March.
    9. Bansal, Prateek & Krueger, Rico & Graham, Daniel J., 2021. "Fast Bayesian estimation of spatial count data models," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    10. Korobilis, Dimitris & Koop, Gary, 2018. "Variational Bayes inference in high-dimensional time-varying parameter models," Essex Finance Centre Working Papers 22665, University of Essex, Essex Business School.
    11. Etienne Côme & Nicolas Jouvin & Pierre Latouche & Charles Bouveyron, 2021. "Hierarchical clustering with discrete latent variable models and the integrated classification likelihood," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(4), pages 957-986, December.
    12. Alex Burnap & John R. Hauser & Artem Timoshenko, 2023. "Product Aesthetic Design: A Machine Learning Augmentation," Marketing Science, INFORMS, vol. 42(6), pages 1029-1056, November.
    13. Yuan Fang & Dimitris Karlis & Sanjeena Subedi, 2022. "Infinite Mixtures of Multivariate Normal-Inverse Gaussian Distributions for Clustering of Skewed Data," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 510-552, November.
    14. Stéphane Bonhomme, 2021. "Selection on Welfare Gains: Experimental Evidence from Electricity Plan Choice," Working Papers 2021-15, Becker Friedman Institute for Research In Economics.
    15. Junming Yin & Jerry Luo & Susan A. Brown, 2021. "Learning from Crowdsourced Multi-labeling: A Variational Bayesian Approach," Information Systems Research, INFORMS, vol. 32(3), pages 752-773, September.
    16. Jeong, Kuhwan & Chae, Minwoo & Kim, Yongdai, 2023. "Online learning for the Dirichlet process mixture model via weakly conjugate approximation," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    17. Daziano, Ricardo A., 2022. "Willingness to delay charging of electric vehicles," Research in Transportation Economics, Elsevier, vol. 94(C).
    18. Andreas Rehs, 2020. "A structural topic model approach to scientific reorientation of economics and chemistry after German reunification," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(2), pages 1229-1251, November.
    19. Kohn, Robert & Nguyen, Nghia & Nott, David & Tran, Minh-Ngoc, 2017. "Random Effects Models with Deep Neural Network Basis Functions: Methodology and Computation," Working Papers 2123/17877, University of Sydney Business School, Discipline of Business Analytics.
    20. Dimitrije Marković & Andrea M F Reiter & Stefan J Kiebel, 2019. "Predicting change: Approximate inference under explicit representation of temporal structure in changing environments," PLOS Computational Biology, Public Library of Science, vol. 15(1), pages 1-31, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:34:y:2023:i:6:d:10.1007_s10845-022-01937-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.