IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v31y2020i5d10.1007_s10845-019-01508-6.html
   My bibliography  Save this article

Identification and classification of materials using machine vision and machine learning in the context of industry 4.0

Author

Listed:
  • Durga Prasad Penumuru

    (Indian Institute of Information Technology, Design and Manufacturing, Kancheepuram)

  • Sreekumar Muthuswamy

    (Indian Institute of Information Technology, Design and Manufacturing, Kancheepuram)

  • Premkumar Karumbu

    (Indian Institute of Information Technology, Design and Manufacturing, Kancheepuram)

Abstract

Manufacturing has experienced tremendous changes from industry 1.0 to industry 4.0 with the advancement of technology in fast-developing areas such as computing, image processing, automation, machine vision, machine learning along with big data and Internet of things. Machine tools in industry 4.0 shall have the ability to identify materials which they handle so that they can make and implement certain decisions on their own as needed. This paper aims to present a generalized methodology for automated material identification using machine vision and machine learning technologies to contribute to the cognitive abilities of machine tools as wells as material handling devices such as robots deployed in industry 4.0. A dataset of the surfaces of four materials (Aluminium, Copper, Medium density fibre board, and Mild steel) that need to be identified and classified is prepared and processed to extract red, green and blue color components of RGB color model. These color components are used as features while training the machine learning algorithm. Support vector machine is used as a classifier and other classification algorithms such as Decision trees, Random forests, Logistic regression, and k-Nearest Neighbor are also applied to the prepared data set. The capability of the proposed methodology to identify the different group of materials is verified with the images available in an open source database. The methodology presented has been validated by conducting four experiments for checking the classification accuracies of the classifier. Its robustness has also been checked for various camera orientations, illumination levels, and focal length of the lens. The results presented show that the proposed scheme can be implemented in an existing manufacturing setup without major modifications.

Suggested Citation

  • Durga Prasad Penumuru & Sreekumar Muthuswamy & Premkumar Karumbu, 2020. "Identification and classification of materials using machine vision and machine learning in the context of industry 4.0," Journal of Intelligent Manufacturing, Springer, vol. 31(5), pages 1229-1241, June.
  • Handle: RePEc:spr:joinma:v:31:y:2020:i:5:d:10.1007_s10845-019-01508-6
    DOI: 10.1007/s10845-019-01508-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-019-01508-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-019-01508-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Masoud Vejdannik & Ali Sadr, 2018. "Automatic microstructural characterization and classification using probabilistic neural network on ultrasound signals," Journal of Intelligent Manufacturing, Springer, vol. 29(8), pages 1923-1940, December.
    2. Alexandre Moeuf & Robert Pellerin & Samir Lamouri & Simon Tamayo-Giraldo & Rodolphe Barbaray, 2018. "The industrial management of SMEs in the era of Industry 4.0," International Journal of Production Research, Taylor & Francis Journals, vol. 56(3), pages 1118-1136, February.
    3. D. Yu. Pimenov & A. Bustillo & T. Mikolajczyk, 2018. "Artificial intelligence for automatic prediction of required surface roughness by monitoring wear on face mill teeth," Journal of Intelligent Manufacturing, Springer, vol. 29(5), pages 1045-1061, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jorge L. Alonso-Perez & Selene L. Cardenas-Maciel & Balter Trujillo-Navarrete & Edgar A. Reynoso-Soto & Nohe R. Cazarez-Cazarez, 2022. "An approach for designing smart manufacturing for the research and development of dye-sensitize solar cell," Journal of Intelligent Manufacturing, Springer, vol. 33(8), pages 2307-2320, December.
    2. George Lãzãroiu & Armenia Androniceanu & Iulia Grecu & Gheorghe Grecu & Octav Neguri?ã, 2022. "Artificial intelligence-based decision-making algorithms, Internet of Things sensing networks, and sustainable cyber-physical management systems in big data-driven cognitive manufacturing," Oeconomia Copernicana, Institute of Economic Research, vol. 13(4), pages 1047-1080, December.
    3. Sinan Uguz & Osman Ipek, 2022. "Prediction of the parameters affecting the performance of compact heat exchangers with an innovative design using machine learning techniques," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1393-1417, June.
    4. Yi Zhang & Peng Peng & Chongdang Liu & Yanyan Xu & Heming Zhang, 2022. "A sequential resampling approach for imbalanced batch process fault detection in semiconductor manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 1057-1072, April.
    5. Swarit Anand Singh & K. A. Desai, 2023. "Automated surface defect detection framework using machine vision and convolutional neural networks," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1995-2011, April.
    6. Christian Kubik & Sebastian Michael Knauer & Peter Groche, 2022. "Smart sheet metal forming: importance of data acquisition, preprocessing and transformation on the performance of a multiclass support vector machine for predicting wear states during blanking," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 259-282, January.
    7. Penglei Dai & Mahdi Hassan & Xuerong Sun & Ming Zhang & Zhengwei Bian & Dikai Liu, 2022. "A framework for multi-robot coverage analysis of large and complex structures," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1545-1560, June.
    8. Yun Peng & Shenyi Zhao & Jizhan Liu, 2021. "Fused Deep Features-Based Grape Varieties Identification Using Support Vector Machine," Agriculture, MDPI, vol. 11(9), pages 1-16, September.
    9. Emmanuel Ekene Okere & Ebrahiema Arendse & Alemayehu Ambaw Tsige & Willem Jacobus Perold & Umezuruike Linus Opara, 2022. "Pomegranate Quality Evaluation Using Non-Destructive Approaches: A Review," Agriculture, MDPI, vol. 12(12), pages 1-25, November.
    10. Michael D. T. McDonnell & Daniel Arnaldo & Etienne Pelletier & James A. Grant-Jacob & Matthew Praeger & Dimitris Karnakis & Robert W. Eason & Ben Mills, 2021. "Machine learning for multi-dimensional optimisation and predictive visualisation of laser machining," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1471-1483, June.
    11. Benjamin Lutz & Dominik Kisskalt & Andreas Mayr & Daniel Regulin & Matteo Pantano & Jörg Franke, 2021. "In-situ identification of material batches using machine learning for machining operations," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1485-1495, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sony, Michael & Naik, Subhash, 2020. "Industry 4.0 integration with socio-technical systems theory: A systematic review and proposed theoretical model," Technology in Society, Elsevier, vol. 61(C).
    2. Zahoor, Nadia & Zopiatis, Anastasios & Adomako, Samuel & Lamprinakos, Grigorios, 2023. "The micro-foundations of digitally transforming SMEs: How digital literacy and technology interact with managerial attributes," Journal of Business Research, Elsevier, vol. 159(C).
    3. Bianco, Débora & Bueno, Adauto & Godinho Filho, Moacir & Latan, Hengky & Miller Devós Ganga, Gilberto & Frank, Alejandro G. & Chiappetta Jabbour, Charbel Jose, 2023. "The role of Industry 4.0 in developing resilience for manufacturing companies during COVID-19," International Journal of Production Economics, Elsevier, vol. 256(C).
    4. Yüksel, Hilmi, 2020. "An empirical evaluation of industry 4.0 applications of companies in Turkey: The case of a developing country," Technology in Society, Elsevier, vol. 63(C).
    5. Zengya Zhao & Sibao Wang & Zehua Wang & Shilong Wang & Chi Ma & Bo Yang, 2022. "Surface roughness stabilization method based on digital twin-driven machining parameters self-adaption adjustment: a case study in five-axis machining," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 943-952, April.
    6. Vitkauskaitė, Elena & Varaniūtė, Viktorija & Bouwman, Harry, 2019. "Evaluating SMEs Readiness to Transform to IoT-Based Business Models," 30th European Regional ITS Conference, Helsinki 2019 205220, International Telecommunications Society (ITS).
    7. Szymon Cyfert & Waldemar Glabiszewski & Maciej Zastempowski, 2021. "Impact of Management Tools Supporting Industry 4.0 on the Importance of CSR during COVID-19. Generation Z," Energies, MDPI, vol. 14(6), pages 1-13, March.
    8. Juan Pablo Usuga Cadavid & Samir Lamouri & Bernard Grabot & Robert Pellerin & Arnaud Fortin, 2020. "Machine learning applied in production planning and control: a state-of-the-art in the era of industry 4.0," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1531-1558, August.
    9. Miguel Baritto & Md Mashum Billal & S. M. Muntasir Nasim & Rumana Afroz Sultana & Mohammad Arani & Ahmed Jawad Qureshi, 2020. "Supporting Tool for The Transition of Existing Small and Medium Enterprises Towards Industry 4.0," Papers 2010.12038, arXiv.org.
    10. Henrik Saabye & Thomas Borup Kristensen & Brian Vejrum Wæhrens, 2020. "Real-Time Data Utilization Barriers to Improving Production Performance: An In-depth Case Study Linking Lean Management and Industry 4.0 from a Learning Organization Perspective," Sustainability, MDPI, vol. 12(21), pages 1-21, October.
    11. Andreas Felsberger & Gerald Reiner, 2020. "Sustainable Industry 4.0 in Production and Operations Management: A Systematic Literature Review," Sustainability, MDPI, vol. 12(19), pages 1-39, September.
    12. Andres Bustillo & Roberto Reis & Alisson R. Machado & Danil Yu. Pimenov, 2022. "Improving the accuracy of machine-learning models with data from machine test repetitions," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 203-221, January.
    13. Gregory A. Harris & Daniel Abernathy & Lin Lu & Anna Hyre & Alexander Vinel, 2022. "Bringing Clarity to Issues with Adoption of Digital Manufacturing Capabilities: an Analysis of Multiple Independent Studies," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 13(4), pages 2868-2889, December.
    14. Tian, Jiamian & Coreynen, Wim & Matthyssens, Paul & Shen, Lei, 2022. "Platform-based servitization and business model adaptation by established manufacturers," Technovation, Elsevier, vol. 118(C).
    15. Gillani, Fatima & Chatha, Kamran Ali & Sadiq Jajja, Muhammad Shakeel & Farooq, Sami, 2020. "Implementation of digital manufacturing technologies: Antecedents and consequences," International Journal of Production Economics, Elsevier, vol. 229(C).
    16. Dragan Rodić & Milenko Sekulić & Marin Gostimirović & Vladimir Pucovsky & Davorin Kramar, 2021. "Fuzzy logic and sub-clustering approaches to predict main cutting force in high-pressure jet assisted turning," Journal of Intelligent Manufacturing, Springer, vol. 32(1), pages 21-36, January.
    17. Zeki Murat Çınar & Qasim Zeeshan & Orhan Korhan, 2021. "A Framework for Industry 4.0 Readiness and Maturity of Smart Manufacturing Enterprises: A Case Study," Sustainability, MDPI, vol. 13(12), pages 1-32, June.
    18. Christian Kubik & Sebastian Michael Knauer & Peter Groche, 2022. "Smart sheet metal forming: importance of data acquisition, preprocessing and transformation on the performance of a multiclass support vector machine for predicting wear states during blanking," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 259-282, January.
    19. Ardamanbir Singh Sidhu & Sehijpal Singh & Raman Kumar & Danil Yurievich Pimenov & Khaled Giasin, 2021. "Prioritizing Energy-Intensive Machining Operations and Gauging the Influence of Electric Parameters: An Industrial Case Study," Energies, MDPI, vol. 14(16), pages 1-39, August.
    20. Ardito, Lorenzo & Raby, Simon & Albino, Vito & Bertoldi, Bernardo, 2021. "The duality of digital and environmental orientations in the context of SMEs: Implications for innovation performance," Journal of Business Research, Elsevier, vol. 123(C), pages 44-56.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:31:y:2020:i:5:d:10.1007_s10845-019-01508-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.