IDEAS home Printed from https://ideas.repec.org/a/spr/joamsc/v47y2019i5d10.1007_s11747-019-00658-6.html
   My bibliography  Save this article

Improving customer profit predictions with customer mindset metrics through multiple overimputation

Author

Listed:
  • Rajkumar Venkatesan

    (University of Virginia)

  • Alexander Bleier

    (Assistant Professor of Marketing, Frankfurt School of Finance & Management)

  • Werner Reinartz

    (University of Cologne)

  • Nalini Ravishanker

    (University of Connecticut)

Abstract

Research and practice have called for the incorporation of customer mindset metrics (CMMs) to improve the accuracy of models that predict individual customer profits. However, as CMMs are self-reported data, collected through customer surveys, they are seldom available for a firm’s entire customer database and in addition always measured with some degree of error. Their usage in models for individual-level predictions of customer profit has therefore proven challenging. We offer a solution through a new method called multiple overimputation (MO). MO treats missing data as an extreme form of measurement error and imputes the CMMs for both customers with observed, albeit with measurement error, as well as missing values, that are then included as predictors in a model of individual customer profits. Through a simulation study, empirical application in the pharmaceutical industry, and a customer selection exercise, we demonstrate the predictive and economic value of applying MO in the context of CRM.

Suggested Citation

  • Rajkumar Venkatesan & Alexander Bleier & Werner Reinartz & Nalini Ravishanker, 2019. "Improving customer profit predictions with customer mindset metrics through multiple overimputation," Journal of the Academy of Marketing Science, Springer, vol. 47(5), pages 771-794, September.
  • Handle: RePEc:spr:joamsc:v:47:y:2019:i:5:d:10.1007_s11747-019-00658-6
    DOI: 10.1007/s11747-019-00658-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11747-019-00658-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11747-019-00658-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Andrew Petersen & V. Kumar & Yolanda Polo & F. Javier Sese, 2018. "Unlocking the power of marketing: understanding the links between customer mindset metrics, behavior, and profitability," Journal of the Academy of Marketing Science, Springer, vol. 46(5), pages 813-836, September.
    2. V. Kumar & Rajkumar Venkatesan & Tim Bohling & Denise Beckmann, 2008. "—The Power of CLV: Managing Customer Lifetime Value at IBM," Marketing Science, INFORMS, vol. 27(4), pages 585-599, 07-08.
    3. Ittner, CD & Larcker, DF, 1998. "Are nonfinancial measures leading indicators of financial performance? An analysis of customer satisfaction," Journal of Accounting Research, Wiley Blackwell, vol. 36, pages 1-35.
    4. Weijters, Bert & Cabooter, Elke & Schillewaert, Niels, 2010. "The effect of rating scale format on response styles: The number of response categories and response category labels," International Journal of Research in Marketing, Elsevier, vol. 27(3), pages 236-247.
    5. Werner J. Reinartz & Rajkumar Venkatesan, 2008. "Decision Models for Customer Relationship Management (CRM)," International Series in Operations Research & Management Science, in: Berend Wierenga (ed.), Handbook of Marketing Decision Models, chapter 0, pages 291-326, Springer.
    6. Johansson, Johny K. & Dimofte, Claudiu V. & Mazvancheryl, Sanal K., 2012. "The performance of global brands in the 2008 financial crisis: A test of two brand value measures," International Journal of Research in Marketing, Elsevier, vol. 29(3), pages 235-245.
    7. Makoto Abe, 2009. "“Counting Your Customers” One by One: A Hierarchical Bayes Extension to the Pareto/NBD Model," Marketing Science, INFORMS, vol. 28(3), pages 541-553, 05-06.
    8. Bas Donkers & Peter Verhoef & Martijn Jong, 2007. "Modeling CLV: A test of competing models in the insurance industry," Quantitative Marketing and Economics (QME), Springer, vol. 5(2), pages 163-190, June.
    9. Sunil Gupta & Valarie Zeithaml, 2006. "Customer Metrics and Their Impact on Financial Performance," Marketing Science, INFORMS, vol. 25(6), pages 718-739, 11-12.
    10. Kelly D. Martin & Patrick E. Murphy, 2017. "The role of data privacy in marketing," Journal of the Academy of Marketing Science, Springer, vol. 45(2), pages 135-155, March.
    11. Ricardo Montoya & Oded Netzer & Kamel Jedidi, 2010. "Dynamic Allocation of Pharmaceutical Detailing and Sampling for Long-Term Profitability," Marketing Science, INFORMS, vol. 29(5), pages 909-924, 09-10.
    12. Yi Qian & Hui Xie, 2014. "Which Brand Purchasers Are Lost to Counterfeiters? An Application of New Data Fusion Approaches," Marketing Science, INFORMS, vol. 33(3), pages 437-448, May.
    13. Wagner A. Kamakura & Michel Wedel, 2003. "List augmentation with model based multiple imputation: a case study using a mixed‐outcome factor model," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 57(1), pages 46-57, February.
    14. Peter S. Fader & Bruce G. S. Hardie & Ka Lok Lee, 2005. "“Counting Your Customers” the Easy Way: An Alternative to the Pareto/NBD Model," Marketing Science, INFORMS, vol. 24(2), pages 275-284, August.
    15. Natalie Mizik & Robert Jacobson, 2004. "Are Physicians ÜEasy MarksÝ? Quantifying the Effects of Detailing and Sampling on New Prescriptions," Management Science, INFORMS, vol. 50(12), pages 1704-1715, December.
    16. Xiaojing Dong & Ramkumar Janakiraman & Ying Xie, 2014. "The Effect of Survey Participation on Consumer Behavior: The Moderating Role of Marketing Communication," Marketing Science, INFORMS, vol. 33(4), pages 567-585, July.
    17. Peter Ebbes & Dominik Papies & Harald J. van Heerde, 2011. "The Sense and Non-Sense of Holdout Sample Validation in the Presence of Endogeneity," Marketing Science, INFORMS, vol. 30(6), pages 1115-1122, November.
    18. Matthew Blackwell & James Honaker & Gary King, 2017. "A Unified Approach to Measurement Error and Missing Data: Overview and Applications," Sociological Methods & Research, , vol. 46(3), pages 303-341, August.
    19. Dan Horsky & Sanjog Misra & Paul Nelson, 2006. "Observed and Unobserved Preference Heterogeneity in Brand-Choice Models," Marketing Science, INFORMS, vol. 25(4), pages 322-335, 07-08.
    20. Ruth N. Bolton, 1998. "A Dynamic Model of the Duration of the Customer's Relationship with a Continuous Service Provider: The Role of Satisfaction," Marketing Science, INFORMS, vol. 17(1), pages 45-65.
    21. Yi Qian & Hui Xie, 2011. "No Customer Left Behind: A Distribution-Free Bayesian Approach to Accounting for Missing Xs in Marketing Models," Marketing Science, INFORMS, vol. 30(4), pages 717-736, July.
    22. David C. Schmittlein & Donald G. Morrison & Richard Colombo, 1987. "Counting Your Customers: Who-Are They and What Will They Do Next?," Management Science, INFORMS, vol. 33(1), pages 1-24, January.
    23. Zhiqiang Zheng & Balaji Padmanabhan, 2006. "Selectively Acquiring Customer Information: A New Data Acquisition Problem and an Active Learning-Based Solution," Management Science, INFORMS, vol. 52(5), pages 697-712, May.
    24. Zvi Gilula & Robert McCulloch, 2013. "Multi level categorical data fusion using partially fused data," Quantitative Marketing and Economics (QME), Springer, vol. 11(3), pages 353-377, September.
    25. Marc Vanhuele & Shuba Srinivasan & Koen Pauwels, 2010. "Mindset Metrics in Market Response Models: An Integrative Approach," Post-Print hal-00528411, HAL.
    26. de Haan, Evert & Verhoef, Peter C. & Wiesel, Thorsten, 2015. "The predictive ability of different customer feedback metrics for retention," International Journal of Research in Marketing, Elsevier, vol. 32(2), pages 195-206.
    27. ., 2017. "Econometric analysis: loopholes and shortcomings," Chapters, in: Econometrics as a Con Art, chapter 5, pages 88-105, Edward Elgar Publishing.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kankam-Kwarteng, Collins & Sarpong, Appiah & Amofah, Ofosu & Acheampong, Stephen, 2021. "Marketing performance of service firms: Recognizing market sensing capability and customer interaction orientation," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 7, pages 8-48.
    2. Johannes Habel & Sascha Alavi & Nicolas Heinitz, 2023. "A theory of predictive sales analytics adoption," AMS Review, Springer;Academy of Marketing Science, vol. 13(1), pages 34-54, June.
    3. Collins Kankam-Kwarteng & Appiah Sarpong & Ofosu Amofah & Stephen Acheampong, 2021. "Marketing performance of service firms: Recognizing market sensing capability and customer interaction orientation," Post-Print hal-03376959, HAL.
    4. Lily (Xuehui) Gao & Evert Haan & Iguácel Melero-Polo & F. Javier Sese, 2023. "Winning your customers’ minds and hearts: Disentangling the effects of lock-in and affective customer experience on retention," Journal of the Academy of Marketing Science, Springer, vol. 51(2), pages 334-371, March.
    5. Ravula, Prashanth & Jha, Subhash & Biswas, Abhijit, 2022. "Relative persuasiveness of repurchase intentions versus recommendations in online reviews," Journal of Retailing, Elsevier, vol. 98(4), pages 724-740.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonathan Z. Zhang & Chun-Wei Chang, 2021. "Consumer dynamics: theories, methods, and emerging directions," Journal of the Academy of Marketing Science, Springer, vol. 49(1), pages 166-196, January.
    2. J. Andrew Petersen & V. Kumar & Yolanda Polo & F. Javier Sese, 2018. "Unlocking the power of marketing: understanding the links between customer mindset metrics, behavior, and profitability," Journal of the Academy of Marketing Science, Springer, vol. 46(5), pages 813-836, September.
    3. Glady, Nicolas & Lemmens, Aurélie & Croux, Christophe, 2015. "Unveiling the relationship between the transaction timing, spending and dropout behavior of customers," International Journal of Research in Marketing, Elsevier, vol. 32(1), pages 78-93.
    4. Jaiswal, Anand K. & Niraj, Rakesh & Park, Chang Hee & Agarwal, Manoj K., 2018. "The effect of relationship and transactional characteristics on customer retention in emerging online markets," Journal of Business Research, Elsevier, vol. 92(C), pages 25-35.
    5. repec:tiu:tiutis:52e91e47-4a2d-4e7b-bb23-3926b842ae30 is not listed on IDEAS
    6. Valendin, Jan & Reutterer, Thomas & Platzer, Michael & Kalcher, Klaudius, 2022. "Customer base analysis with recurrent neural networks," International Journal of Research in Marketing, Elsevier, vol. 39(4), pages 988-1018.
    7. Kohsuke Matsuoka, 2020. "Exploring the interface between management accounting and marketing: a literature review of customer accounting," Journal of Management Control: Zeitschrift für Planung und Unternehmenssteuerung, Springer, vol. 31(3), pages 157-208, September.
    8. Gijsenberg, Maarten & Verhoef, Pieter, 2018. "Moving Forward," Research Report 2018003-MARK, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    9. Juha Karvanen & Ari Rantanen & Lasse Luoma, 2014. "Survey data and Bayesian analysis: a cost-efficient way to estimate customer equity," Quantitative Marketing and Economics (QME), Springer, vol. 12(3), pages 305-329, September.
    10. Song, Tae Ho & Kim, Sang Yong & Kim, Ji Yoon, 2016. "The dynamic effect of customer equity across firm growth: The case of small and medium-sized online retailers," Journal of Business Research, Elsevier, vol. 69(9), pages 3755-3764.
    11. Chou, Ping & Chuang, Howard Hao-Chun & Chou, Yen-Chun & Liang, Ting-Peng, 2022. "Predictive analytics for customer repurchase: Interdisciplinary integration of buy till you die modeling and machine learning," European Journal of Operational Research, Elsevier, vol. 296(2), pages 635-651.
    12. Jerath, Kinshuk & Fader, Peter S. & Hardie, Bruce G.S., 2016. "Customer-base analysis using repeated cross-sectional summary (RCSS) data," European Journal of Operational Research, Elsevier, vol. 249(1), pages 340-350.
    13. Eva Ascarza & Bruce G. S. Hardie, 2013. "A Joint Model of Usage and Churn in Contractual Settings," Marketing Science, INFORMS, vol. 32(4), pages 570-590, July.
    14. Alina Ferecatu & Arnaud Bruyn & Prithwiraj Mukherjee, 2024. "Silently killing your panelists one email at a time: The true cost of email solicitations," Journal of the Academy of Marketing Science, Springer, vol. 52(4), pages 1216-1239, July.
    15. Sunghun Chung & Donghyuk Shin & Jooyoung Park, 2022. "Predicting Firm Market Performance Using the Social Media Promoter Score," Marketing Letters, Springer, vol. 33(4), pages 545-561, December.
    16. Albers, Sönke, 2012. "Optimizable and implementable aggregate response modeling for marketing decision support," International Journal of Research in Marketing, Elsevier, vol. 29(2), pages 111-122.
    17. Park, Chang Hee & Park, Young-Hoon & Schweidel, David A., 2014. "A multi-category customer base analysis," International Journal of Research in Marketing, Elsevier, vol. 31(3), pages 266-279.
    18. Antonello Maruotti & Jan Bulla & Tanya Mark, 2019. "Assessing the influence of marketing activities on customer behaviors: a dynamic clustering approach," METRON, Springer;Sapienza Università di Roma, vol. 77(1), pages 19-42, April.
    19. Eva Ascarza & Scott A. Neslin & Oded Netzer & Zachery Anderson & Peter S. Fader & Sunil Gupta & Bruce G. S. Hardie & Aurélie Lemmens & Barak Libai & David Neal & Foster Provost & Rom Schrift, 2018. "In Pursuit of Enhanced Customer Retention Management: Review, Key Issues, and Future Directions," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 5(1), pages 65-81, March.
    20. Sven Baehre & Michele O’Dwyer & Lisa O’Malley & Nick Lee, 2022. "The use of Net Promoter Score (NPS) to predict sales growth: insights from an empirical investigation," Journal of the Academy of Marketing Science, Springer, vol. 50(1), pages 67-84, January.
    21. Woong Park & Hyunchul Ahn, 2022. "Not All Churn Customers Are the Same: Investigating the Effect of Customer Churn Heterogeneity on Customer Value in the Financial Sector," Sustainability, MDPI, vol. 14(19), pages 1-22, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joamsc:v:47:y:2019:i:5:d:10.1007_s11747-019-00658-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.