IDEAS home Printed from https://ideas.repec.org/a/inm/ormksc/v24y2005i2p275-284.html
   My bibliography  Save this article

“Counting Your Customers” the Easy Way: An Alternative to the Pareto/NBD Model

Author

Listed:
  • Peter S. Fader

    (The Wharton School, University of Pennsylvania, 749 Huntsman Hall, 3730 Walnut Street, Philadelphia, Pennsylvania 19104-6340)

  • Bruce G. S. Hardie

    (London Business School, Regent’s Park, London NW1 4SA, United Kingdom)

  • Ka Lok Lee

    (Catalina Health Resource, Blue Bell, Pennsylvania 19422)

Abstract

Today’s managers are very interested in predicting the future purchasing patterns of their customers, which can then serve as an input into “lifetime value” calculations. Among the models that provide such capabilities, the Pareto/NBD “counting your customers” framework proposed by Schmittlein et al. (1987) is highly regarded. However, despite the respect it has earned, it has proven to be a difficult model to implement, particularly because of computational challenges associated with parameter estimation. We develop a new model, the beta-geometric/NBD (BG/NBD), which represents a slight variation in the behavioral “story” associated with the Pareto/NBD but is vastly easier to implement. We show, for instance, how its parameters can be obtained quite easily in Microsoft Excel. The two models yield very similar results in a wide variety of purchasing environments, leading us to suggest that the BG/NBD could be viewed as an attractive alternative to the Pareto/NBD in most applications.

Suggested Citation

  • Peter S. Fader & Bruce G. S. Hardie & Ka Lok Lee, 2005. "“Counting Your Customers” the Easy Way: An Alternative to the Pareto/NBD Model," Marketing Science, INFORMS, vol. 24(2), pages 275-284, August.
  • Handle: RePEc:inm:ormksc:v:24:y:2005:i:2:p:275-284
    DOI: 10.1287/mksc.1040.0098
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mksc.1040.0098
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mksc.1040.0098?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David C. Schmittlein & Donald G. Morrison & Richard Colombo, 1987. "Counting Your Customers: Who-Are They and What Will They Do Next?," Management Science, INFORMS, vol. 33(1), pages 1-24, January.
    2. Wu, Couchen & Chen, Hsiu-Li, 2000. "Counting your customers: Compounding customer's in-store decisions, interpurchase time and repurchasing behavior," European Journal of Operational Research, Elsevier, vol. 127(1), pages 109-119, November.
    3. Ralf Elsner & Manfred Krafft & Arnd Huchzermeier, 2004. "The 2003 ISMS Practice Prize Winner: Optimizing Rhenania's Direct Marketing Business Through Dynamic Multilevel Modeling (DMLM) in a Multicatalog-Brand Environment," Marketing Science, INFORMS, vol. 23(2), pages 192-206, June.
    4. Peter S. Fader & Bruce G. S. Hardie, 2001. "Forecasting Repeat Sales at CDNOW: A Case Study," Interfaces, INFORMS, vol. 31(3_supplem), pages 94-107, June.
    5. David C. Schmittlein & Robert A. Peterson, 1994. "Customer Base Analysis: An Industrial Purchase Process Application," Marketing Science, INFORMS, vol. 13(1), pages 41-67.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jerath, Kinshuk & Fader, Peter S. & Hardie, Bruce G.S., 2016. "Customer-base analysis using repeated cross-sectional summary (RCSS) data," European Journal of Operational Research, Elsevier, vol. 249(1), pages 340-350.
    2. Reutterer, Thomas & Platzer, Michael & Schröder, Nadine, 2021. "Leveraging purchase regularity for predicting customer behavior the easy way," International Journal of Research in Marketing, Elsevier, vol. 38(1), pages 194-215.
    3. Romero, Jaime & van der Lans, Ralf & Wierenga, Berend, 2013. "A Partially Hidden Markov Model of Customer Dynamics for CLV Measurement," Journal of Interactive Marketing, Elsevier, vol. 27(3), pages 185-208.
    4. Korkmaz, E. & Kuik, R. & Fok, D., 2013. ""Counting Your Customers": When will they buy next? An empirical validation of probabilistic customer base analysis models based on purchase timing," ERIM Report Series Research in Management ERS-2013-001-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    5. Michael Platzer & Thomas Reutterer, 2016. "Ticking Away the Moments: Timing Regularity Helps to Better Predict Customer Activity," Marketing Science, INFORMS, vol. 35(5), pages 779-799, September.
    6. Fader, Peter S. & Hardie, Bruce G.S., 2009. "Probability Models for Customer-Base Analysis," Journal of Interactive Marketing, Elsevier, vol. 23(1), pages 61-69.
    7. Meade, Nigel & Islam, Towhidul, 2010. "Using copulas to model repeat purchase behaviour - An exploratory analysis via a case study," European Journal of Operational Research, Elsevier, vol. 200(3), pages 908-917, February.
    8. Chao Wang & Ilaria Dalla Pozza, 2014. "The antecedents of customer lifetime duration and discounted expected transactions: Discrete-time based transaction data analysis," Working Papers 2014-203, Department of Research, Ipag Business School.
    9. Pablo Marshall, 2015. "A simple heuristic for obtaining pareto/NBD parameter estimates," Marketing Letters, Springer, vol. 26(2), pages 165-173, June.
    10. Patrick Bachmann & Markus Meierer & Jeffrey Näf, 2021. "The Role of Time-Varying Contextual Factors in Latent Attrition Models for Customer Base Analysis," Marketing Science, INFORMS, vol. 40(4), pages 783-809, July.
    11. Eymann, Torsten (Ed.), 2009. "Tagungsband zum Doctoral Consortium der WI 2009 [WI2009 Doctoral Consortium Proceedings]," Bayreuth Reports on Information Systems Management 40, University of Bayreuth, Chair of Information Systems Management.
    12. Buckinx, Wouter & Van den Poel, Dirk, 2005. "Customer base analysis: partial defection of behaviourally loyal clients in a non-contractual FMCG retail setting," European Journal of Operational Research, Elsevier, vol. 164(1), pages 252-268, July.
    13. Park, Chang Hee & Park, Young-Hoon & Schweidel, David A., 2014. "A multi-category customer base analysis," International Journal of Research in Marketing, Elsevier, vol. 31(3), pages 266-279.
    14. Makoto Abe, 2008. ""Counting Your Customers" One by One: A Hierarchical Bayes Extension to the Pareto/NBD Model," CIRJE F-Series CIRJE-F-537, CIRJE, Faculty of Economics, University of Tokyo.
    15. Makoto Abe, 2009. "Customer Lifetime Value and RFM Data: Accounting Your Customers: One by One," CIRJE F-Series CIRJE-F-616, CIRJE, Faculty of Economics, University of Tokyo.
    16. Makoto Abe, 2006. ""Counting Your Customers" One by One: An Individual Level RF Analysis Based on Consumer Behavior Theory," CIRJE F-Series CIRJE-F-408, CIRJE, Faculty of Economics, University of Tokyo.
    17. Gary Lilien & Rajdeep Grewal & Douglas Bowman & Min Ding & Abbie Griffin & V. Kumar & Das Narayandas & Renana Peres & Raji Srinivasan & Qiong Wang, 2010. "Calculating, creating, and claiming value in business markets: Status and research agenda," Marketing Letters, Springer, vol. 21(3), pages 287-299, September.
    18. repec:tiu:tiutis:52e91e47-4a2d-4e7b-bb23-3926b842ae30 is not listed on IDEAS
    19. Sharad Borle & Siddharth S. Singh & Dipak C. Jain, 2008. "Customer Lifetime Value Measurement," Management Science, INFORMS, vol. 54(1), pages 100-112, January.
    20. Roland T. Rust & Tuck Siong Chung, 2006. "Marketing Models of Service and Relationships," Marketing Science, INFORMS, vol. 25(6), pages 560-580, 11-12.
    21. Teck-Hua Ho & Young-Hoon Park & Yong-Pin Zhou, 2006. "Incorporating Satisfaction into Customer Value Analysis: Optimal Investment in Lifetime Value," Marketing Science, INFORMS, vol. 25(3), pages 260-277, 05-06.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormksc:v:24:y:2005:i:2:p:275-284. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.