IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v72y2019i3d10.1007_s10589-019-00060-6.html
   My bibliography  Save this article

A random block-coordinate Douglas–Rachford splitting method with low computational complexity for binary logistic regression

Author

Listed:
  • Luis M. Briceño-Arias

    (Universidad Técnica Federico Santa María)

  • Giovanni Chierchia

    (Université Paris-Est (UPEM))

  • Emilie Chouzenoux

    (Université Paris-Est (UPEM)
    University Paris-Saclay)

  • Jean-Christophe Pesquet

    (University Paris-Saclay)

Abstract

In this paper, we propose a new optimization algorithm for sparse logistic regression based on a stochastic version of the Douglas–Rachford splitting method. Our algorithm performs both function and variable splittings. It sweeps the training set by randomly selecting a mini-batch of data at each iteration, and it allows us to update the variables in a block coordinate manner. Our approach leverages the proximity operator of the logistic loss, which is expressed with the generalized Lambert W function. Experiments carried out on standard datasets demonstrate the efficiency of our approach w. r. t. stochastic gradient-like methods.

Suggested Citation

  • Luis M. Briceño-Arias & Giovanni Chierchia & Emilie Chouzenoux & Jean-Christophe Pesquet, 2019. "A random block-coordinate Douglas–Rachford splitting method with low computational complexity for binary logistic regression," Computational Optimization and Applications, Springer, vol. 72(3), pages 707-726, April.
  • Handle: RePEc:spr:coopap:v:72:y:2019:i:3:d:10.1007_s10589-019-00060-6
    DOI: 10.1007/s10589-019-00060-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-019-00060-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-019-00060-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lukas Meier & Sara Van De Geer & Peter Bühlmann, 2008. "The group lasso for logistic regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 53-71, February.
    2. Patrick L. Combettes & Jean-Christophe Pesquet, 2011. "Proximal Splitting Methods in Signal Processing," Springer Optimization and Its Applications, in: Heinz H. Bauschke & Regina S. Burachik & Patrick L. Combettes & Veit Elser & D. Russell Luke & Henry (ed.), Fixed-Point Algorithms for Inverse Problems in Science and Engineering, chapter 0, pages 185-212, Springer.
    3. Liu, Yufeng & Helen Zhang, Hao & Park, Cheolwoo & Ahn, Jeongyoun, 2007. "Support vector machines with adaptive Lq penalty," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6380-6394, August.
    4. Franck Iutzeler & Jérôme Malick, 2018. "On the Proximal Gradient Algorithm with Alternated Inertia," Journal of Optimization Theory and Applications, Springer, vol. 176(3), pages 688-710, March.
    5. Wang, Lifeng & Shen, Xiaotong, 2007. "On L1-Norm Multiclass Support Vector Machines: Methodology and Theory," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 583-594, June.
    6. Jonathan Eckstein, 2017. "A Simplified Form of Block-Iterative Operator Splitting and an Asynchronous Algorithm Resembling the Multi-Block Alternating Direction Method of Multipliers," Journal of Optimization Theory and Applications, Springer, vol. 173(1), pages 155-182, April.
    7. Bartlett, Peter L. & Jordan, Michael I. & McAuliffe, Jon D., 2006. "Convexity, Classification, and Risk Bounds," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 138-156, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nabeel Al-Milli & Amjad Hudaib & Nadim Obeid, 2021. "Population Diversity Control of Genetic Algorithm Using a Novel Injection Method for Bankruptcy Prediction Problem," Mathematics, MDPI, vol. 9(8), pages 1-18, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianqing Fan & Jinchi Lv, 2008. "Sure independence screening for ultrahigh dimensional feature space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 849-911, November.
    2. Minh Pham & Xiaodong Lin & Andrzej Ruszczyński & Yu Du, 2021. "An outer–inner linearization method for non-convex and nondifferentiable composite regularization problems," Journal of Global Optimization, Springer, vol. 81(1), pages 179-202, September.
    3. Pierre Alquier & Vincent Cottet & Guillaume Lecué, 2017. "Estimation bounds and sharp oracle inequalities of regularized procedures with Lipschitz loss functions," Working Papers 2017-30, Center for Research in Economics and Statistics.
    4. Patrick R. Johnstone & Jonathan Eckstein, 2021. "Single-forward-step projective splitting: exploiting cocoercivity," Computational Optimization and Applications, Springer, vol. 78(1), pages 125-166, January.
    5. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    6. Guan, Wei & Gray, Alexander, 2013. "Sparse high-dimensional fractional-norm support vector machine via DC programming," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 136-148.
    7. Mauricio Romero Sicre, 2020. "On the complexity of a hybrid proximal extragradient projective method for solving monotone inclusion problems," Computational Optimization and Applications, Springer, vol. 76(3), pages 991-1019, July.
    8. Yunda Dong, 2021. "Weak convergence of an extended splitting method for monotone inclusions," Journal of Global Optimization, Springer, vol. 79(1), pages 257-277, January.
    9. Steffen Borgwardt & Rafael M. Frongillo, 2019. "Power Diagram Detection with Applications to Information Elicitation," Journal of Optimization Theory and Applications, Springer, vol. 181(1), pages 184-196, April.
    10. Ye, Ya-Fen & Shao, Yuan-Hai & Deng, Nai-Yang & Li, Chun-Na & Hua, Xiang-Yu, 2017. "Robust Lp-norm least squares support vector regression with feature selection," Applied Mathematics and Computation, Elsevier, vol. 305(C), pages 32-52.
    11. Guillaume Sagnol & Edouard Pauwels, 2019. "An unexpected connection between Bayes A-optimal designs and the group lasso," Statistical Papers, Springer, vol. 60(2), pages 565-584, April.
    12. Vincent, Martin & Hansen, Niels Richard, 2014. "Sparse group lasso and high dimensional multinomial classification," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 771-786.
    13. Ernest K. Ryu & Yanli Liu & Wotao Yin, 2019. "Douglas–Rachford splitting and ADMM for pathological convex optimization," Computational Optimization and Applications, Springer, vol. 74(3), pages 747-778, December.
    14. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    15. Ze Han & Wei Song & Xiangzheng Deng, 2016. "Responses of Ecosystem Service to Land Use Change in Qinghai Province," Energies, MDPI, vol. 9(4), pages 1-16, April.
    16. Junhong Lin & Lorenzo Rosasco & Silvia Villa & Ding-Xuan Zhou, 2018. "Modified Fejér sequences and applications," Computational Optimization and Applications, Springer, vol. 71(1), pages 95-113, September.
    17. Croux, Christophe & Jagtiani, Julapa & Korivi, Tarunsai & Vulanovic, Milos, 2020. "Important factors determining Fintech loan default: Evidence from a lendingclub consumer platform," Journal of Economic Behavior & Organization, Elsevier, vol. 173(C), pages 270-296.
    18. Silvia Bonettini & Peter Ochs & Marco Prato & Simone Rebegoldi, 2023. "An abstract convergence framework with application to inertial inexact forward–backward methods," Computational Optimization and Applications, Springer, vol. 84(2), pages 319-362, March.
    19. Puya Latafat & Panagiotis Patrinos, 2017. "Asymmetric forward–backward–adjoint splitting for solving monotone inclusions involving three operators," Computational Optimization and Applications, Springer, vol. 68(1), pages 57-93, September.
    20. Sedi Bartz & Rubén Campoy & Hung M. Phan, 2022. "An Adaptive Alternating Direction Method of Multipliers," Journal of Optimization Theory and Applications, Springer, vol. 195(3), pages 1019-1055, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:72:y:2019:i:3:d:10.1007_s10589-019-00060-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.