IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v198y2023i2d10.1007_s10957-023-02214-3.html
   My bibliography  Save this article

A Projective Splitting Method for Monotone Inclusions: Iteration-Complexity and Application to Composite Optimization

Author

Listed:
  • Majela Pentón Machado

    (Universidade Federal da Bahia)

  • Mauricio Romero Sicre

    (Universidade Federal da Bahia)

Abstract

We propose an inexact projective splitting method to solve the problem of finding a zero of a sum of maximal monotone operators. We perform convergence and complexity analyses of the method by viewing it as a special instance of an inexact proximal point method proposed by Solodov and Svaiter in 2001, for which pointwise and ergodic complexity results have been studied recently by Sicre. Also, for this latter method, we establish convergence rates and complexity bounds for strongly monotone inclusions, from where we obtain linear convergence for our projective splitting method under strong monotonicity and cocoercivity assumptions. We apply the proposed projective splitting scheme to composite convex optimization problems and establish pointwise and ergodic function value convergence rates, extending a recent work of Johnstone and Eckstein.

Suggested Citation

  • Majela Pentón Machado & Mauricio Romero Sicre, 2023. "A Projective Splitting Method for Monotone Inclusions: Iteration-Complexity and Application to Composite Optimization," Journal of Optimization Theory and Applications, Springer, vol. 198(2), pages 552-587, August.
  • Handle: RePEc:spr:joptap:v:198:y:2023:i:2:d:10.1007_s10957-023-02214-3
    DOI: 10.1007/s10957-023-02214-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-023-02214-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-023-02214-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Patrick L. Combettes & Jean-Christophe Pesquet, 2011. "Proximal Splitting Methods in Signal Processing," Springer Optimization and Its Applications, in: Heinz H. Bauschke & Regina S. Burachik & Patrick L. Combettes & Veit Elser & D. Russell Luke & Henry (ed.), Fixed-Point Algorithms for Inverse Problems in Science and Engineering, chapter 0, pages 185-212, Springer.
    2. Mauricio Romero Sicre, 2020. "On the complexity of a hybrid proximal extragradient projective method for solving monotone inclusion problems," Computational Optimization and Applications, Springer, vol. 76(3), pages 991-1019, July.
    3. Patrick R. Johnstone & Jonathan Eckstein, 2021. "Single-forward-step projective splitting: exploiting cocoercivity," Computational Optimization and Applications, Springer, vol. 78(1), pages 125-166, January.
    4. Jonathan Eckstein, 2017. "A Simplified Form of Block-Iterative Operator Splitting and an Asynchronous Algorithm Resembling the Multi-Block Alternating Direction Method of Multipliers," Journal of Optimization Theory and Applications, Springer, vol. 173(1), pages 155-182, April.
    5. Renato D. C. Monteiro & Chee-Khian Sim, 2018. "Complexity of the relaxed Peaceman–Rachford splitting method for the sum of two maximal strongly monotone operators," Computational Optimization and Applications, Springer, vol. 70(3), pages 763-790, July.
    6. Majela Pentón Machado, 2019. "Projective method of multipliers for linearly constrained convex minimization," Computational Optimization and Applications, Springer, vol. 73(1), pages 237-273, May.
    7. Majela Pentón Machado, 2018. "On the Complexity of the Projective Splitting and Spingarn’s Methods for the Sum of Two Maximal Monotone Operators," Journal of Optimization Theory and Applications, Springer, vol. 178(1), pages 153-190, July.
    8. L. C. Ceng & B. S. Mordukhovich & J. C. Yao, 2010. "Hybrid Approximate Proximal Method with Auxiliary Variational Inequality for Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 146(2), pages 267-303, August.
    9. M. Marques Alves & Jonathan Eckstein & Marina Geremia & Jefferson G. Melo, 2020. "Relative-error inertial-relaxed inexact versions of Douglas-Rachford and ADMM splitting algorithms," Computational Optimization and Applications, Springer, vol. 75(2), pages 389-422, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mauricio Romero Sicre, 2020. "On the complexity of a hybrid proximal extragradient projective method for solving monotone inclusion problems," Computational Optimization and Applications, Springer, vol. 76(3), pages 991-1019, July.
    2. Patrick R. Johnstone & Jonathan Eckstein, 2021. "Single-forward-step projective splitting: exploiting cocoercivity," Computational Optimization and Applications, Springer, vol. 78(1), pages 125-166, January.
    3. Weiyang Ding & Michael K. Ng & Wenxing Zhang, 2024. "A generalized alternating direction implicit method for consensus optimization: application to distributed sparse logistic regression," Journal of Global Optimization, Springer, vol. 90(3), pages 727-753, November.
    4. Luis M. Briceño-Arias & Fernando Roldán, 2022. "Four-Operator Splitting via a Forward–Backward–Half-Forward Algorithm with Line Search," Journal of Optimization Theory and Applications, Springer, vol. 195(1), pages 205-225, October.
    5. Dong, Yunda, 2024. "Extended splitting methods for systems of three-operator monotone inclusions with continuous operators," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 223(C), pages 86-107.
    6. Luis M. Briceño-Arias & Giovanni Chierchia & Emilie Chouzenoux & Jean-Christophe Pesquet, 2019. "A random block-coordinate Douglas–Rachford splitting method with low computational complexity for binary logistic regression," Computational Optimization and Applications, Springer, vol. 72(3), pages 707-726, April.
    7. Yunda Dong, 2021. "Weak convergence of an extended splitting method for monotone inclusions," Journal of Global Optimization, Springer, vol. 79(1), pages 257-277, January.
    8. Guillaume Sagnol & Edouard Pauwels, 2019. "An unexpected connection between Bayes A-optimal designs and the group lasso," Statistical Papers, Springer, vol. 60(2), pages 565-584, April.
    9. Ernest K. Ryu & Yanli Liu & Wotao Yin, 2019. "Douglas–Rachford splitting and ADMM for pathological convex optimization," Computational Optimization and Applications, Springer, vol. 74(3), pages 747-778, December.
    10. Thai Chuong, 2013. "Newton-like methods for efficient solutions in vector optimization," Computational Optimization and Applications, Springer, vol. 54(3), pages 495-516, April.
    11. Junhong Lin & Lorenzo Rosasco & Silvia Villa & Ding-Xuan Zhou, 2018. "Modified Fejér sequences and applications," Computational Optimization and Applications, Springer, vol. 71(1), pages 95-113, September.
    12. Silvia Bonettini & Peter Ochs & Marco Prato & Simone Rebegoldi, 2023. "An abstract convergence framework with application to inertial inexact forward–backward methods," Computational Optimization and Applications, Springer, vol. 84(2), pages 319-362, March.
    13. Puya Latafat & Panagiotis Patrinos, 2017. "Asymmetric forward–backward–adjoint splitting for solving monotone inclusions involving three operators," Computational Optimization and Applications, Springer, vol. 68(1), pages 57-93, September.
    14. Sedi Bartz & Rubén Campoy & Hung M. Phan, 2022. "An Adaptive Alternating Direction Method of Multipliers," Journal of Optimization Theory and Applications, Springer, vol. 195(3), pages 1019-1055, December.
    15. Gui-Hua Lin & Zhen-Ping Yang & Hai-An Yin & Jin Zhang, 2023. "A dual-based stochastic inexact algorithm for a class of stochastic nonsmooth convex composite problems," Computational Optimization and Applications, Springer, vol. 86(2), pages 669-710, November.
    16. Gilles Bareilles & Yassine Laguel & Dmitry Grishchenko & Franck Iutzeler & Jérôme Malick, 2020. "Randomized Progressive Hedging methods for multi-stage stochastic programming," Annals of Operations Research, Springer, vol. 295(2), pages 535-560, December.
    17. Hedy Attouch & Alexandre Cabot & Zaki Chbani & Hassan Riahi, 2018. "Inertial Forward–Backward Algorithms with Perturbations: Application to Tikhonov Regularization," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 1-36, October.
    18. TAYLOR, Adrien B. & HENDRICKX, Julien M. & François GLINEUR, 2016. "Exact worst-case performance of first-order methods for composite convex optimization," LIDAM Discussion Papers CORE 2016052, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    19. Suthep Suantai & Kunrada Kankam & Prasit Cholamjiak, 2020. "A Novel Forward-Backward Algorithm for Solving Convex Minimization Problem in Hilbert Spaces," Mathematics, MDPI, vol. 8(1), pages 1-13, January.
    20. Wang, Yugang & Huang, Ting-Zhu & Zhao, Xi-Le & Deng, Liang-Jian & Ji, Teng-Yu, 2020. "A convex single image dehazing model via sparse dark channel prior," Applied Mathematics and Computation, Elsevier, vol. 375(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:198:y:2023:i:2:d:10.1007_s10957-023-02214-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.